
Hypothesis Testing About the Mean: General Info & Critical Values for a Z Test

This graph and chart below assumes a two-tailed test; otherwise the entire area α is in the right or left tail (which changes the critical values in the chart).

Set of Hypotheses	$\mathbf{H}_0:\boldsymbol{\mu}=\boldsymbol{\mu}_0$	$\mathbf{H}_{0}:\boldsymbol{\mu}\geq\boldsymbol{\mu}_{0}$	$\mathbf{H}_0:\boldsymbol{\mu} \leq \boldsymbol{\mu}_0$
	$H_1: \mu \neq \mu_0$	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$
Level of	Two-tailed	Left-tailed	Right-tailed
significance	Critical Values	Critical Value	Critical Value
$\alpha = 0.10$	±1.645	-1.28	+1.28
$\alpha = 0.05$	±1.96	-1.645	+1.645
$\alpha = 0.01$	± 2.575	-2.33	+2.33

The number α is the **level of significance** chosen by the researcher in advance of the hypothesis test; $1 - \alpha$ is the confidence level for a confidence interval (which corresponds to a 2-tailed hypothesis test). Rejecting the null hypothesis when it is true (a Type I error) should be rare, and the probability of a Type I error is given by this α .

The **p-value** for a hypothesis test is the actual probability of getting the sample mean value or a more extreme value in the direction of the alternative hypothesis if the null hypothesis is true; p is the actual area under the curve to the right (in a right-tailed test), to the left (in a left-tailed test) or to the left and right (in a two-tailed test) of the **test statistic**.

There are at least 3 hypothesis test approaches:

- (1) Use α , comparing the test value with the critical value(s). [Traditional 5-step process]
- (2) Compare p and α ; Reject H₀ if $p \le \alpha$.

(3)	Just	use	p.
(~)		•••••	r •

p-value > 0.1	Little or no evidence against H_0
0.05 < p-value < 0.1	Some evidence against H_0
0.01 < p-value < 0.05	Moderate evidence against H_0
0.001 < p-value < 0.01	Strong evidence against H_0
p-value < 0.001	Very strong evidence against H_0