## Chapter 8 -

1. (a) $\mathrm{H}_{0}: \mu=24.6$ years (claim) $\mathrm{H}_{1}: \mu \neq 24.6$ years
(b) $\mathrm{H}_{0}: \mu \leq 25.4$ years $\mathrm{H}_{1}: \mu>25.4$ years (claim)
(c) $\mathrm{H}_{0}: \mu \geq 88$ points $\mathrm{H}_{1}: \mu<88$ points (claim)
(d) $\mathrm{H}_{0}: \mu \geq 70 \mathrm{bpm} \quad \mathrm{H}_{1}: \mu<70$ bpm (claim)
(e) $\mathrm{H}_{0}: \mu=8.2 \mathrm{lb}$ (claim) $\mathrm{H}_{1}: \mu \neq 8.2 \mathrm{lb}$
2. $\mathrm{H}_{0}: \mu \leq \$ 19,410$
$\mathrm{H}_{1}: \mu>\$ 19,410$
All hypothesis test calculated values (critical values, test statistics, and pvalues) are approximate.
Claim: $\mathrm{H}_{1}$

Test statistic:
Critical value: 2.33
$z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{22098-19410}{6050 / \sqrt{40}} \approx 2.81$

## Decision: Reject $\mathrm{H}_{0}$.

Conclusion: There is strong evidence ( $p$-value $\approx 0.0025$ ) in favor of the claim that the cost has increased.
3. $\mathrm{H}_{0}: \mu \geq 11.52$ in.
$\mathrm{H}_{1}: \mu<11.52$ in
Claim: $\mathrm{H}_{1}$

Test statistic:
Critical value:: -1.833
$t=\frac{\bar{X}-\mu}{s / \sqrt{n}}=\frac{7.42-11.52}{1.3 / \sqrt{10}} \approx-9.97$

Decision: Reject $\mathrm{H}_{0}$.

Conclusion: There is extremely strong evidence ( $p$-value $\approx 0.0000018$ ) in favor of the claim that the rainfall is below average.
4. $\mathrm{H}_{0}: p=64.7 \%$
$\mathrm{H}_{1}: p \neq 64.7 \%$
$\mathrm{p}=0.647, \mathrm{q}=0.353, \hat{p}=\frac{92}{150}=0.61 \overline{3}$
Test statistic:
Critical value(s): $\pm 2.575$
$z=\frac{\hat{p}-p}{\sqrt{p q / n}}=\frac{92 / 150^{-0.647}}{\sqrt{0.647 \cdot 0.353 / 150}} \approx-0.863$

## Decision: Do not reject $\mathrm{H}_{0}$.

Conclusion: There is very little evidence $(p$-value $=0.3883)$ in favor of the claim that there is a difference from the national population on the proportion who own their home..
5. $\begin{aligned} & \mathrm{H}_{0}: \sigma \leq 20 \text { calories } \\ & \mathrm{H}_{1}: \sigma>20 \text { calories }\end{aligned}$ Claim: $\mathrm{H}_{1}$

Test statistic:
Critical value: 36.191

$$
\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{19 \cdot 35.109^{2}}{20^{2}} \approx 58.550
$$

## Decision: Reject $\mathrm{H}_{0}$.

Conclusion: There is very strong evidence ( p -value $<0.005, \mathrm{p} \approx 0.00000655$ ) in favor of the claim that the standard deviation is greater than 20 calories.

## Chapter 9 -

6. $\left(\overline{X_{1}}-\overline{X_{2}}\right)-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}<\mu_{1}-\mu_{2}<\left(\overline{X_{1}}-\overline{X_{2}}\right)+z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}}$
$(9.2-8.8)-1.96 \sqrt{\frac{0.3^{2}}{27}+\frac{0.1^{2}}{30}}<\mu_{1}-\mu_{2}<(9.2-8.8)+1.96 \sqrt{\frac{0.3^{2}}{27}+\frac{0.1^{2}}{30}}$
$0.28 \mathrm{v}<\mu_{1}-\mu_{2}<0.52 \mathrm{v} \quad$ Since the $95 \%$ confidence interval for the difference in means does not contain 0 , if we set up a hypothesis test for these batteries' mean voltage performance with $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$, we would reject the null at $\alpha=0.05$.
7. $H_{0}: \mu_{1}=\mu_{2}$
$H_{1}: \mu_{1} \neq \mu_{2}$ (Claim)
Test statistic:
Critical value(s):: $\pm 2.33$
$z=\frac{\left(\overline{X_{1}}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}{ }^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}}}=\frac{(9.2-8.8)-(0)}{\sqrt{\frac{0.3^{2}}{27}+\frac{0.7^{2}}{30}}} \approx 6.61$

## Decision: Reject $\mathrm{H}_{0}$.

Conclusion: There is extremely strong evidence ( p -value $<0.0001, \mathrm{p}$-value $\approx$ 0.0000000000397 ) to support the claim that there is a significant difference in the voltage output of the two battery brands.
8. Step 1-

$$
\begin{array}{ll}
H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} & \text { Because of the } \mathrm{F} \text { Test, we are using subscript } 1 \\
H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2} \text { (Claim) } & \text { for IRS tax preparers, and we are using subscrif } \\
\text { for the volunteer tax preparers. }
\end{array}
$$

Test statistic: $\quad \mathrm{F}=\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}}=\frac{5.6^{2}}{4.3^{2}}=1.70 \quad$ Critical value: 4.19

Decision: Do not reject $\mathrm{H}_{0}$. Assume that the variances are equal.

Step 2 -

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{1}: \mu_{1} \neq \mu_{2} \text { (Claim) }
\end{aligned}
$$

Test statistic:

$$
\text { Critical value(s):: } \pm 2.508
$$

$t=\frac{\left(\overline{X_{1}}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}}{n_{1}+n_{2}-2}} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{(21-27)-(0)}{\sqrt{\frac{9 \cdot 5.6^{2}+13 \cdot 4.3^{2}}{22}} \sqrt{\frac{1}{10}+\frac{1}{14}}} \approx-2.973$
Decision: Reject $\mathrm{H}_{0}$.
Conclusion: There is strong evidence ( p -value $<0.005$ ) in favor of the claim that there is a significant difference in the average times of the two types of tax return preparers.

The $98 \%$ confidence interval is $-11.1<\mu_{1}-\mu_{2}<-0.93$.
9.

| Twin A ( $X_{1}$ ) | 87 | 92 | 78 | 83 | 88 | 90 | 84 | 93 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YWWiF $\mathbf{B} 0\left(X_{2}\right) \sum D^{83}=10495 \bar{D}$ |  |  | $=\frac{199}{8}=1.25^{83}$ |  | $8_{D}^{6}=\sqrt{\frac{193-10^{2} / 88}{7}} \approx$ |  |  | .696 |
| $\mathrm{D}=\mathrm{X}_{1}-\mathrm{X}_{2}$ | 4 | -3 | -1 | 0 | 2 | -3 | 4 | 7 |
| $\mathrm{D}^{2}$ | 16 | 9 | 1 | 0 | 4 | 9 | 16 | 49 |

$\mathrm{H}_{0}: \mu_{\mathrm{D}}=0$
$\mathrm{H}_{1}: \mu_{\mathrm{D}} \neq 0$ (Claim)
Test statistic:
Critical value(s):: $\pm 3.499$
[df = 7]
$t=\frac{\bar{D}-\mu_{D}}{s_{D} / \sqrt{n}}=\frac{1.25-0}{3.615 / \sqrt{8}} \approx 0.978$
Decision: Do not reject $\mathrm{H}_{0}$.
Conclusion: There very little evidence ( $p$-value $>0.10$, $p$-value $\approx 0.361$ ) to support the claim that there is a significant difference in the pulse rates between identical twins.

The $99 \%$ confidence interval is $-3.23<\mu_{D}<5.73$. Notice that this interval includes 0 .
10. $\hat{p}_{1}=\frac{80}{150}=\frac{8}{15}=0.5 \overline{3} \quad \hat{p}_{2}=\frac{30}{100}=0.3 \quad \overline{\mathrm{p}}=\frac{80+30}{150+100}=\frac{11}{25}=0.44 \quad \overline{\mathrm{q}}=0.56$
$\mathrm{H}_{0}: p_{1}=p_{2}$
$\mathrm{H}_{1}: p_{1} \neq p_{2} \quad$ Claim: $\mathrm{H}_{1}$

Test statistic: Critical value(s):: $\pm 1.96$

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\bar{p} \cdot \bar{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{\left(\frac{8}{15}-0.3\right)-0}{\sqrt{0.44 \cdot 0.56 \cdot\left(\frac{1}{150}+\frac{1}{100}\right)}} \approx 3.64
$$

## Decision: Reject $\mathrm{H}_{0}$.

Conclusion: There is very strong evidence ( p -value $<0.0001$, p -value $\approx 0.00027$ ) to support the claim that there is a significant difference between the proportion of people who suffer from lung disease in the two communities.

## Chapter 10

11. $0.5238 ; 42.5146$
12. (a) There is no relationship between the two variables.
(b) There is a perfect positive relationship between the two variables; a linear function with positive slope characterizes the relationship. All of the points would be on the line.
(c) There is a perfect negative relationship between the two variables; a linear function with negative slope characterizes the relationship. All of the points would be on the line.
13. $\pm 0.514$; Reject $\mathrm{H}_{0}: \rho=0$.
14. 

(a) -0.9776
(b) $y^{\prime}=57.6425-0.0093 x$
(c) 24.7 mpg
(d) 21.7 mpg
15. (a) $\mathrm{H}_{0}: \rho=0$
$\mathrm{H}_{1}: \rho \neq 0$ (Claim)
Test Statistic: $\mathrm{r} \approx 0.9808$
Critical Value: $\pm 0.444$
Decision: Reject $\mathrm{H}_{0}$
Conclusion: There is an extremely strong positive correlation ( p -value $\approx 1.14 \times 10^{-15}$ ) between ad costs and years.
(b) $y^{\prime}=-276,549,517.2+139,144.5511 x$
(c)

| Year | Cost |
| :---: | :---: |
| 2015 | $\$ 3,800,000$ |
| 2016 | $\$ 4,000,000$ |
| 2020 | $\$ 4,500,000$ |
| 2025 | $\$ 5,200,000$ |

(d) 96.19
(e) 139,144; an average increase of $\$ 139,144$ per year for the 30 -second ad

## Do your best! Rise to the challenge! Live and learn!

