Nearly all values below are approximate. In general, round to one more decimal place than the given data or to 4 decimal places (like many of the tables), depending on the nature of the problem.
1.
(a) Yes
(b) No
(c) No
(d) Yes
(e) Yes
2. $\frac{11,008}{19,683} \approx 0.5593$ or 55.93%
3. 0.82
4.
(a) 0.9803 or 98.03%
(b) 0.2514 or 25.14%
(c) 0.3434 or 34.34%
5. $\quad 70$ (or 71)
6.
(a) 0.1255 or 12.55%
(b) 0.4608 or 46.08%
(c) By the Central Limit Theorem, sample means are less variable than individual data values.
7. (a) 82
(b) $77.0<\mu<87.0$
(c) $75.5<\mu<88.5$
(d) The 99% confidence interval is larger because the confidence level is larger.
8. $\overline{\mathrm{X}}=41.6 \quad \mathrm{~s}=6.0$
$38.8 \mathrm{~g}<\mu<44.4 \mathrm{~g}$
9. $\hat{p}=\frac{36}{85} \approx 0.424$
$0.285<\mathrm{p}<0.562$ or $28.5 \%<\mathrm{p}<56.2 \%$
Since 0.52 is in this interval, the difference isn't considered statistically significant (at the 99\% confidence level).
10. $\quad 4.1 \mathrm{~min}<\sigma<7.1 \mathrm{~min}$

Do your best! Live and learn!

