Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection of your best work and should also be very helpful to you as you prepare for exams.

1. Make up 2 functions, f and g, and then show how to find the composition of these functions $(\mathrm{f} \circ \mathrm{g})(\mathrm{x})$. Use no more than one linear function.

$$
\begin{aligned}
& f(x)=2 x+1 \quad g(x)=x^{2}-3 \\
& (f \circ g)(x)=f(g(x))=f\left(x^{2}-3\right)=
\end{aligned}
$$

\qquad

A function is one-to-one if each x value in the domain is paired with one value in the range (function definition) and each y value in the range is paired with \qquad value in the domain (one-to-one).

If every \qquad (horizontal or vertical) line intersects the graph of a function f in at most one point, then the function f is one-to-one.

Sketch 2 graphs, one which is a function but isn't one-to-one and one which is a one-toone function.

2. Complete the 3 main steps for finding the inverse of a function, $y=f(x)$. Also, complete the example in the box, and use this function and its inverse for the graphs (next page).
(1) From $y=f(x)$ form, the main idea is to \qquad .
(2) Then, if possible, solve for y in terms of x.
(3) Then write $\mathrm{y}=\mathrm{f}^{-1}(\mathrm{x})$.

You can check your result by showing that
\qquad .

$$
\begin{aligned}
& \text { Let } y=f(x)=\sqrt{x-4} \\
& x=\sqrt{y-4} \\
& =y-4 \\
& y= \\
& f^{-1}(x)=x^{2}+4
\end{aligned}
$$

Show the graphs and tables for the specific function, f , and its inverse, f^{-1}.

f^{-1}	
x	y
0	4
1	5
2	8
3	13

Also give the domains and ranges of these 2 one-to-one functions. Use interval notation.
Domain of f: $[4, \infty)$
Range of $f:[0, \infty)$
Domain of f^{-1} : \qquad Range of f^{-1} : \qquad
3. The general form for an exponential function is \qquad with $\mathrm{a}>0$ and $\mathrm{a} \neq 1$.

The general form for a logarithmic function is \qquad with $\mathrm{a}>0$ and $\mathrm{a} \neq 1$.

The other form of a logarithm is \qquad .

Label the following graphs with the following 3 equations:
$y=2^{x}, y=x, y=\log _{2} x$

What is the relationship between the exponential function $y=2^{x}$ and the logarithmic function $\mathrm{y}=\log _{2} \mathrm{x}$?
4. Draw rough sketches of the graphs of 2 exponential functions of the form $y=a^{x}$ under the following conditions. Include any asymptotes and intercepts on your graphs. You may choose a specific value for the base, a.
(a) a >1
(b) $0<$ a <1

Both graphs have y-intercept \qquad and horizontal asymptote \qquad .
5. The compound interest formula for the accumulated amount of an investment is given by the formula, $A=P\left(1+\frac{r}{n}\right)^{n \cdot t}$, where P is the principal, r is the \qquad -, and t is the \qquad .

Common numbers of compoundings (n) for a year include 1 for annually, 2 for semiannually, 4 for quarterly, 12 for \qquad , 52 for weekly, and 360 for daily.

If interest is compounded "continuously", we use a new formula, \qquad , where P is the principal, r is the annual interest rate, and t is the time in years.

The number e is (like π) a transcendental number and is approximately
\qquad .

The number e is defined to be what the expression $\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}$ approaches as n approaches infinity (∞).

This formula is part of the general exponential growth (or decay) category of applications.
6. There are several exponential and logarithmic equation solving principles. Complete the following statements.
(a) If $\log _{a} u=v$, then \qquad -
(b) If $\mathrm{a}^{\mathrm{u}}=\mathrm{a}^{\mathrm{v}}$, then \qquad .
(c) If $\log _{\mathrm{a}} \mathrm{u}=\log _{\mathrm{a}} \mathrm{v}$, then \qquad .

Show the proper use of two of these principles in the problems below.

$$
\log _{2}\left(x^{2}-1\right)=3 \quad \log _{2}\left(x^{2}-1\right)=\log _{2} 3
$$

7. Complete the following chart of logarithm rules, with their rationale.

1. $\log _{\mathrm{a}} \mathrm{a}=1$ because \qquad For example, $\log 10=$ \qquad and $\ln \mathrm{e}=1$.	6. $\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$ since $\frac{a^{M}}{a^{N}}=$
2. \qquad because $a^{0}=1$. For example, $\log 1=0$ and $\ln 1=$ \qquad	7. $\log _{\mathrm{a}} \mathrm{M}^{\mathrm{r}}=\mathrm{r} \cdot \square$.
3. $\log _{\mathrm{a}} \mathrm{a}^{\mathrm{r}}=\square$.	8. $\log _{\mathrm{a}} \mathrm{M}=$ \qquad This is the "Change-of-Base Formula".
4. $\mathrm{a}^{\log _{a} \mathrm{M}}=$	
5. $\log _{a} M N=\log _{a} M+\log _{a} N$ since $\mathrm{a}^{\mathrm{M}} \cdot \mathrm{a}^{\mathrm{N}}=$ \qquad	

8. The common logarithm is base 10 , and the inverse of $y=\log x$ is \qquad .

The natural logarithm is base e, and the inverse of $y=\ln x$ is \qquad .

These are the two typical calculator keys (\log and \llbracket).
Perform the following computations. Round to 4 decimal places.
(a) $\log 23$
(b) $\ln 100$
\approx \qquad ≈ 1.3617
(c) $\log 10+\ln \mathrm{e}$
$=$ \qquad

Describe 2 practical applications of exponential functions or logarithmic functions. Include the specific formula related to the application.
(1) __U.S Population Growth (Census Years, 1900-Present)

$$
y=81.2253 \cdot 1.0126^{x}
$$

(2) the pH scale
$\mathrm{pH}=$ \qquad
9. Complete the chart below involving the 3 cases for systems of 2 linear equations.

	Case1	Case 2	Case 3
Drawing:			
Geometric relationship:		Parallel lines	Coinciding lines
Solution Set:	$\left\{\left(\mathrm{x}_{*}, \mathrm{y}_{*}\right)\right\}$		\{(x, y) \| either equation $\}$

Show your work for each method of solving linear systems.
(a) Graphing (Write each linear equation near the corresponding line on your graph.)

$$
\left\{\begin{array}{l}
x+y=5 \\
3 x-2 y=0
\end{array}\right.
$$

The solution appears to be \qquad .
9. (b) Substitution

$$
\begin{aligned}
& y=5-x \\
& 3 x-2(5-x)=0
\end{aligned}
$$

(c) Elimination or Addition

$$
\begin{aligned}
& 2(x+y)=2(5) \\
& 2 x+2 y=10 \\
& 3 x-2 y=0
\end{aligned}
$$

10. Write a few sentences describing something you learned that was new for you in class this unit. You may include a favorite activity, an interesting application, a teaching and learning technique, or a specific concept that you better understand as a result of this unit.
