Math 1111 Journal Entries Units IV& V (Sections 6.1-6.7, 12.1)

Name _____

Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. *Your portfolio should be a collection of your best work and should also be very helpful to you as you prepare for exams.*

1. Make up 2 functions, f and g, and then show how to find the **composition** of these functions $(f \circ g)(x)$. Use no more than one linear function.

$$f(x) = 2x + 1 g(x) = x2 - 3$$

(f \circ g)(x) = f(g(x)) = f(x² - 3) = _____

A function is **one-to-one** if each x value in the domain is paired with one value in the range (function definition) and each y value in the range is paired with ______ value in the domain (one-to-one).

If every ______ (horizontal or vertical) line intersects the graph of a function f in at most one point, then the function f is one-to-one.

Sketch 2 graphs, one which is a function but isn't one-to-one and one which is a one-to-one function.

2. Complete the 3 main steps for finding the **inverse** of a function, y = f(x). Also, complete the example in the box, and use this function and its inverse for the graphs (next page).

(1) From y = f(x) form, the main idea is to _____

(2) Then, if possible, solve for y in terms of x.

(3) Then write $y = f^{-1}(x)$.

You can check your result by showing that

Let
$$y = f(x) = \sqrt{x - 4}$$

 $x = \sqrt{y - 4}$
 $y = \underline{\qquad}$
 $f^{-1}(x) = x^{2} + 4$

Show the graphs and tables for the specific function, f, and its inverse, f^{-1} .

Also give the domains and ranges of these 2 one-to-one functions. Use interval notation.

Domain of f: $[4, \infty)$ Range of f: $[0, \infty)$ Domain of f^{-1} :Range of f^{-1} :

3. The general form for an exponential function is _____ with a > 0 and $a \neq 1$. The general form for a logarithmic function is _____ with a > 0 and $a \neq 1$. The other form of a logarithm is _____.

Label the following graphs with the following 3 equations:

 $y = 2^{x}, y = x, y = \log_{2} x$

What is the relationship between the exponential function $y = 2^x$ and the logarithmic function $y = \log_2 x$?

4. Draw rough sketches of the graphs of 2 exponential functions of the form $y = a^x$ under the following conditions. Include any asymptotes and intercepts on your graphs. You may choose a specific value for the base, a.

infinity (∞) .

5.

This formula is part of the general exponential growth (or decay) category of applications.

- 6. There are several exponential and logarithmic equation solving principles. Complete the following statements.
 - (a) If $\log_a u = v$, then _____.
 - (b) If $a^{u} = a^{v}$, then _____.
 - (c) If $\log_a u = \log_a v$, then _____.

Show the proper use of two of these principles in the problems below.

 $\log_2(x^2 - 1) = 3$ $\log_2(x^2 - 1) = \log_2 3$

7. Complete the following chart of logarithm rules, with their rationale.

8. The common logarithm is base 10, and the inverse of $y = \log x$ is ______.

The natural logarithm is base e, and the inverse of $y = \ln x$ is ______.

These are the two typical calculator keys (log and ln).

Perform the following computations. Round to 4 decimal places.

(a) log 23	(b) ln 100	(c) $\log 10 + \ln e$
≈ 1.3617	≈	=

Describe 2 practical applications of exponential functions or logarithmic functions. Include the specific formula related to the application.

(1)_	U.S Population Growth (Census Years, 1900-Present)	$y = 81.2253 \cdot 1.0126^{x}$
(2)	the pH scale	pH =

9. Complete the chart below involving the 3 cases for systems of 2 linear equations.

	Case1	Case 2	Case 3
Drawing:	(X*,Y*)		Ay-axis 6x-ay=12 y=2x-4
Geometric relationship:		Parallel lines	Coinciding lines
Solution Set:	$\left\{ \left(x_{*}, y_{*} \right) \right\}$		$\{(x, y) either equation\}$

Show your work for each method of solving linear systems.

(a) Graphing (Write each linear equation near the corresponding line on your graph.)

$$y = 5 - x$$
$$3x - 2(5 - x) = 0$$

(c) Elimination or Addition

$$2(x + y) = 2(5)$$
$$2x + 2y = 10$$
$$\underline{3x - 2y = 0}$$

10. Write a few sentences describing something you learned that was new for you in class this unit. You may include a favorite activity, an interesting application, a teaching and learning technique, or a specific concept that you better understand as a result of this unit.

Do your best! Live and learn! Rise to the challenge!