College Algebra

Projectile Motion Project

Name \qquad
The height in feet, $\mathrm{H}(\mathrm{t})$, of a projectile starting from ground level can be approximated over time t (in seconds) using the following function:

$$
\mathrm{H}(\mathrm{t})=\mathrm{v}_{0} \mathrm{t}-16 \mathrm{t}^{2}
$$

1. Complete the table for an initial velocity of $80 \mathrm{fps}\left[\mathrm{v}_{0}=80 \mathrm{ft} / \mathrm{sec}\right]$. Show your set up on one problem.

Time (seconds)	0	0.5	1	1.5	2	2.5	3	3.5	4
Height (feet)									

2. Sketch the points on the graph provided below, and sketch a curve that contains the points in your scatter plot. Put the dependent variable on the vertical axis. Clearly label the axes, and use a consistent scale on each axis.

3. According to the equation, when does the projectile reach its maximum height? Show the use of the $-\frac{b}{2 a}$ method.
4. Find the maximum height the projectile reaches.

5. What is the duration of the projectile's flight? Explain your reasoning.
6. List the following features of the parabola given by $y=-16 x^{2}+80 x$:

Vertex: \qquad
y-intercept: \qquad
x -intercepts: \qquad and \qquad

Axis of symmetry: \qquad
7. Rewrite the equation in \#6 in vertex form: $y=a(x-h)^{2}+k$.

Do your best! Live and learn!

