\qquad

Respond to each item, giving sufficient detail. You may neatly handwrite your responses. This should be very helpful to you as you prepare for exams.

1. Show the general formulas for calculating the distance and midpoint for the two points given by $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, along with an example for each.

General Distance formula: $\mathrm{d}=$ \qquad
Specific Points: $(2,5)$ and $(0,-1)$
Distance apart: $\quad \mathrm{d}=$

General Midpoint formula: $\mathrm{M}=($ \qquad , \qquad)

Midpoint: $\quad \mathrm{M}=$
2. Consider symmetry with respect to the x-axis, the y-axis, and the origin, giving the algebraic test along with the corresponding graph to illustrate each type of symmetry.

	(a)	(b)	(c)
Graph Example			
Type of symmetry		x-axis	y-axis
Algebraic "test"	 -y for y and check for equivalence with the original equation	Substitute -y for y and check for equivalence with the original equation	

Refer to your graphs above. Which (a, b, and/or c) pass the vertical line test? \qquad
3. Consider the following rough sketches of the following 9 basic functions/types of functions. Please refer to Section 3.4 in our textbook for this "Library of Functions". Complete this table with either the missing formula or the missing graph.

$\mathrm{y}=\mathrm{b}$		$y=\|x\|$
		$\mathrm{y}=\sqrt{\mathrm{x}}$
$y=x^{3}$		

4. Write the 3 forms of linear equations along with the meanings of the constants in each formula.

Slope-intercept form: \qquad m : slope b : \qquad
General form: \qquad $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are real numbers
Point-slope form: \qquad Point: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \quad$ Slope: m
5. Describe the meaning of slope and how to find it given two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.

Meaning: \qquad

Formula: $\mathrm{m}=$ \qquad

Also include the 4 general slope cases along with a drawing for each.
6. For parallel lines, the slopes are \qquad , and the y-intercepts are different.

For perpendicular lines, the product of the slopes of the 2 lines is \qquad .

On the diagrams below put a reasonable set of slope numbers on each line.

7. All horizontal lines have the form $\mathrm{y}=\mathrm{c}$, where c is a real number.

Write the equation of the given graph. \qquad

All vertical lines have the form \qquad $=\mathrm{c}$, where c is a real number.

Write the equation of the given graph. \qquad

Consider the identity function, $\mathrm{y}=\mathrm{x}$, and find its slope: $\mathrm{m}=$ \qquad .

The x - and y-intercept is \qquad .

8. There are countless applications involving linear functions. One involves the linear relationship between Celsius and Fahrenheit temperature measurements. A common formula (in slope-intercept form) is $\mathrm{F}=1.8 \mathrm{C}+32$.

A table for this function would look like this.

${ }^{\circ} \mathrm{C}$	0	1	2	3
${ }^{\circ} \mathrm{F}$	32	33.8	35.6	37.4

(a) Another application involves uniform motion. Write the linear formula relating distance (d) and time (t) for a fixed rate of speed, $\mathrm{r}=70 \mathrm{mph} . \mathrm{d}=$ \qquad
Complete the following table.

$\mathrm{t}(\mathrm{hr})$	0	1	2	3
$\mathrm{~d}(\mathrm{mi})$	0			

8. (b) Another common application involves cost structures. For example, an automobile mechanic may charge \$245 for parts and \$50 an hour for labor. Write the corresponding formula, with C for cost and t for time in hours.
$\mathrm{C}=$ \qquad

$\mathrm{t}(\mathrm{hr})$	0	1	2	3
$\mathrm{C}(\$)$	245			

9. Write the 2 forms of the equation of a circle (standard and general). Use the constants h, k, and r in the standard form.

Standard form:
Center \qquad ; radius r

General form: \qquad

True or False:
The unit circle has the equation $\mathrm{x}^{2}+\mathrm{y}^{2}=1$. \qquad

The circle given by $(x-3)^{2}+(y+2)^{2}=16$ has center $(3,-2)$ and radius 8. \qquad
10. Write a few sentences describing something you learned that was new for you in class this unit. You may include a favorite activity, an interesting application, a teaching and learning technique, or a specific concept that you better understand as a result of this unit.

Do your best! Rise to the challenge! Live and learn!

