Linear Functions \& Relations
Slope-intercept form
$y=f(x)=m x+b$
Standard form
Point-slope form
$A x+B y=C$
$y-y_{1}=m\left(x-x_{1}\right)$

Slope formula: $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Standard Equation of a Circle
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Center (h, k); radius r
Distance Formula from $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Quadratic Functions
Standard form $y=f(x)=a x^{2}+b x+c$
Vertex form $\quad y=a(x-h)^{2}+k$

The Quadratic Formula
The solutions of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0, \mathrm{a} \neq 0$ are given by

$$
\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

Compound Interest Formulas:

$$
A=P\left(1+\frac{r}{n}\right)^{n \cdot t}
$$

$$
\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}
$$

$\mathrm{A}=$ accumulated amount, $\mathrm{P}=$ Principal, $\mathrm{r}=$ annual interest rate, $\mathrm{t}=$ number of years, $\mathrm{n}=$ number of annual compoundings

Laws of Exponents

$$
\begin{aligned}
a^{s} \cdot a^{t} & =a^{s+t} & \left(a^{s}\right)^{t} & =a^{s . t} \\
1^{s} & =1 & \mathrm{a}^{-s}=\frac{1}{a^{s}}=\left(\frac{1}{a}\right)^{s} & a^{s}=a^{s} \cdot b^{s}
\end{aligned}
$$

Properties for Logarithms

1. $\log _{a}(M \cdot N)=\log _{a} M+\log _{a} N$	4. $\log _{a} M=\frac{\log M}{\log a}=\frac{\ln M}{\ln a}$
2. $\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$	5. $a^{r}=e^{r \ln a}$
3. $\log _{a} M^{r}=r \log _{a} M$	

