1. (a) Complete the tables below for the given exponential and logarithmic functions.

$$
y=3^{x} \quad \begin{array}{|c|c|}
\hline x & y \\
\hline-3 & \\
-2 & \\
-1 & \\
0 & \\
1 & \\
2 & \\
3 & \\
5 & \\
\hline
\end{array}
$$

$$
y=\log _{3} x
$$

\mathbf{x}	\mathbf{y}
	-3
	-2
	-1
	0
	1
	2
	3

(b) Graph these two functions along with $\mathrm{y}=\mathrm{x}$ on the coordinate grid. Include any asymptote(s) and intercept(s).
(c) What do you notice about the tables in part (a)? What do you notice about the graphs?

Conversions from one form to another

Use
$\log _{a} x=y$
\leftrightarrow
$\mathbf{a}^{\mathrm{y}}=\mathbf{x}$
2. Complete the chart, converting the given equation from one form to the other.

Logarithmic form	Exponential form
(a) $\log _{3} 81=4$	
(b) $\log 0.001=-3$	$7^{5}=16,807$
(c)	$\mathrm{e}^{2.9957} \approx 20$
(d)	
(e) $\log _{5} 1=0$	$12^{1}=12$
(f)	
(g) $\ln 39 \approx 3.6636$	

3. Evaluate without a calculator. Give exact answers, whenever possible. Show your reasoning.
(a) $\log _{2} 64$
(b) $\log 100,000,000$
(c) $\log _{3} 1$

Calculator Keys:

Common logarithm LOG $=\log _{10} \quad$ Natural logarithm LN $=\log _{\mathrm{e}}$
4. Evaluate. Use your calculator to approximate these to 4 decimal places.
(a) $\log 153$
(b) $\log 0.0005$
(c) $\ln 44$

Solving logarithmic equations:

Use
(1) changing forms or
(2) $\log _{\mathrm{a}} \mathrm{u}=\log _{\mathrm{a}} \mathrm{v} \quad \leftrightarrow \quad \mathrm{u}=\mathrm{v}$
or (3) $\mathrm{a}^{\mathrm{u}}=\mathrm{a}^{\mathrm{v}} \quad \leftrightarrow \quad \mathrm{u}=\mathrm{v}$
5. Solve for x . Give exact answers, if possible.
(a) $\log _{3} \mathrm{x}=10$
(b) $\mathrm{e}^{2 \mathrm{x}}=5$
(c) $10^{x+3}=10,000,000$

"Log Rules"	
1. $\log _{\mathrm{b}} \mathrm{b}=1$ because $\mathrm{b}^{1}=\mathrm{b}$	5. $\log _{b} \mathrm{M} \cdot \mathrm{N}=\log _{b} \mathrm{M}+\log _{b} \mathrm{~N}$ since $b^{M} \cdot b^{N}=b^{M+N}$
2. $\log _{\mathrm{b}} 1=0$ because $\mathrm{b}^{0}=1$	6. $\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N$ since $\frac{b^{M}}{b^{N}}=b^{M-N}$
3. $\log _{b} b^{\mathrm{n}}=\mathrm{n}$ because $\mathrm{b}^{\mathrm{n}}=\mathrm{b}^{\mathrm{n}}$	7. $\log _{\mathrm{b}} \mathrm{M}^{\mathrm{p}}=\mathrm{p} \cdot \log _{\mathrm{b}} \mathrm{M}$ since $\left(\mathrm{b}^{\mathrm{M}}\right)^{\mathrm{p}}=\mathrm{b}^{\mathrm{M} \cdot \mathrm{p}}$
4. $\mathrm{b}^{\log _{\mathrm{b}} \mathrm{n}}=\mathrm{n}$ because $\log _{b} \mathrm{n}=\log _{\mathrm{b}} \mathrm{n}$	8. $\log _{\mathrm{b}} \mathrm{M}=\frac{\log _{\mathrm{a}} \mathrm{M}}{\log _{\mathrm{a}} \mathrm{b}}$

6. Fill in the blanks using the log rules
(a) $\log 3+\log 5=\log$
(b) $\ln 20-\ln 10=\ln$ \qquad (c) $\log _{3} 4^{5}=$ \qquad $\cdot \log _{3} 4$
(d) $8^{\log _{8} 1.25}=$ \qquad (e) $\log 10^{4.5}=$
7. Evaluate. Use your calculator to approximate these to 4 decimal places.
(a) $\log _{2} 16$
(b) $\log _{7} 28$
(c) $\log _{5} 1000$
8. Given that $\log _{10} 2 \approx 0.301$, find each of the following.
(a) $\log _{10} 4$
(b) $\log _{10} 2000$
(c) $\log _{10} 5$
9. How would you enter $\mathrm{y}=\log _{2} \mathrm{x}$ on a graphing calculator?

What about $\mathrm{y}=\log _{5} \mathrm{x}$?

Simple Interest

10. Invest $\$ 1,000$ at 4% for 3 years. Find the accumulated amount.

Compound Interest

11. Invest $\$ 1,000$ at 3.5% compounded \qquad for 5 years. Find the accumulated amount.
(a) monthly
(b) quarterly
(c) continuously
12. The formula $\mathrm{A}=\mathrm{Pe}^{(\mathrm{APR} \cdot \mathrm{Y})}$ gives the accumulated amount (A) of an investment when P is the initial investment, APR is the annual interest rate, and Y is the time in years, assuming continuous compounding and no deposits or withdrawals.

For an initial investment of $\$ 2,000$, compounded continuously at a 7% annual interest rate, find to the nearest tenth of a year when this investment doubles in value.
13. The formula for the accumulated amount, A , of an investment (or loan) is given by the formula, $\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{APR}}{\mathrm{n}}\right)^{(\mathrm{n} \cdot \mathrm{Y})}$, where P is the principal, APR is the annual interest rate, and n is the annual number of interest periods, and Y is the number of years.

For an initial investment of $\$ 2,000$, compounded monthly at a 2% annual interest rate, find to the nearest tenth of a year when this investment doubles in value.
14. For an initial investment of $\$ 1,000$, compounded annually at a 4.5% annual interest rate, find to the nearest tenth of a year when this investment doubles in value.

Complete the table:

APR	3.5%	5%	7%	10%
$\mathrm{T}_{\text {double }}$ ((sing 70/P formula)				
$\mathrm{T}_{\text {double }}$ (using log formula)				
Touble (exact, assuming $\mathrm{n}=12$)				

