\qquad
Respond to each item, giving sufficient detail. Neatly handwrite your responses. This should be very helpful to you as you prepare for exams.

1. The three types of probability are:
(1) theoretical (classical)
(2)
(3) \qquad

Give the classical probability formula for the probability of any event A, using S for the sample space with all equally likely outcomes.

$$
\mathrm{P}(\mathrm{~A})=
$$

The probability of an event is always between \qquad and \qquad .

If A represents any event, the probability that event A does not occur is \qquad .

Using the given probability of an event, find the probability that it does not occur.

$$
\frac{1}{6}-35 \% \quad 0.9
$$

2. Two events are independent if the outcome of one does not affect the probability of the other event. Consider two independent events, A and B , with individual probabilities, $P(A)$ and $P(B)$. The probability that A and B occur together is
$P(A$ and $B)=$ \qquad

For example, toss 2 coins. Find the probability of a "head" on both.

Two events are \qquad if the outcome of one affects the probability of the other event. The probability that dependent events A and B occur together is
$\mathrm{P}(\mathrm{A}$ and B$)=$ \qquad where $\mathrm{P}(\mathrm{B}$ given A$)$ means "the probability of event B given the occurrence of event A ."

For example, a bag contains five red balls and eight white balls. If you select 2 balls at random without replacement, find the probability that you get 1 red ball and 1 white ball.
3. Complete the formulas below, and draw a Venn diagram to illustrate each rule.

For events that are non-overlapping (mutually exclusive), $\mathrm{P}(\mathrm{A}$ or B$)=$ \qquad

For events that are overlapping (i.e., they can occur together),

$\mathrm{P}(\mathrm{A}$ or B$)=$ \qquad
4. (a) A town is growing by 5,000 more people every year. This is an example of \qquad growth (linear or exponential). If the town has a current population of 235,000 and this steady growth continues, what will the town's population be in 2 years? Show your work below.
(b) A town is growing by 5% each year. This is an example of \qquad growth (linear or exponential). If the town has a current population of 235,000 and this growth continues, what will the town's population be in 2 years? Show work.
5. Find a function rule for the following data tables.

$y=$| | |
| :---: | :---: |
| x | y |
| -2 | -6 |
| -1 | -2 |
| 0 | 2 |
| 1 | 6 |
| 2 | 10 |
| 3 | 14 |

$f(x)=\left[\begin{array}{c|c} \\ \hline-2 & f(x) \\ \hline-1 & 1 / 3 \\ \hline 0 & 1 \\ \hline 1 & 3 \\ \hline 2 & 9 \\ \hline 3 & 27 \\ \hline\end{array}\right.$
6. For a quantity growing exponentially at a rate of $\mathrm{P} \%$ per time period, the doubling time is $\mathrm{T}_{\text {double }} \approx$ \qquad
This approximation works best for small growth rates and breaks down for rates over about 15%.

For example, if the APR is 5%, the approximate doubling time is \qquad years.

If the APR is 10%, the approximate doubling time is \qquad years.

For a quantity decaying exponentially at a rate of $\mathrm{P} \%$ per time period, the half-life is given by the formula
$\mathrm{T}_{\text {half }} \approx$ \qquad
This approximation works best for small decay rates and breaks down for rates over about 15%. The exact formulas both involve logarithms.

True or False. \qquad
7. Match the following graphs with their corresponding function type.
(a) logistic \qquad (b) exponential \qquad

Consider a population that begins growing exponentially at a base rate of 4.0% per year and then follows a logistic growth pattern. If the carrying capacity is 40 billion, find the actual growth rate when the population is 10 billion.

Use the formula: \quad logistic growth rate $=r \times\left(1-\frac{\text { population }}{\text { carrying capacity }}\right)$
8. Label the following graphs with the corresponding equations from the following list: $y=5^{x}, y=x$, and $y=\log _{5} x$

Complete the following chart of logarithm rules, along with their rationale.

1. $\log _{\mathrm{a}} \mathrm{a}=1$ because	$\begin{aligned} & \text { 5. } \log _{a}=\log _{a} \mathrm{M}+\log _{\mathrm{a}} \mathrm{~N} \\ & \text { since } \mathrm{a}^{\mathrm{M}} \cdot \mathrm{a}^{\mathrm{N}}=\mathrm{a}^{\mathrm{M}+\mathrm{N}} . \end{aligned}$
2.___ because $\mathrm{a}^{0}=1$.	6. $\begin{aligned} & \log _{a} \frac{M}{N}=\log _{a} M _\quad \log _{a} N \\ & \text { since } \frac{a^{M}}{a^{N}}=a^{M-N} . \end{aligned}$
3. $\log _{a} a^{r}=r$	7. $\log _{\mathrm{a}} \mathrm{M}^{\mathrm{r}}=\mathrm{r} \cdot \log _{\mathrm{a}} \mathrm{M}$
4. $\mathrm{a}^{\log _{\mathrm{a}} \mathrm{M}}=\mathrm{M}$	8. \qquad

9. The compound interest formula for the accumulated amount of an investment is $A=P\left(1+\frac{A P R}{n}\right)^{(n Y)}$

Find the approximate and exact double time for an investment of \$500 at an APR of 3.5\% compounded annually.
(a) Approximate
(b) Exact
10. Write a few sentences describing something you learned that was new for you in class this unit. You may include a favorite activity, an interesting application, a teaching and learning technique, or a specific concept that you better understand as a result of this unit.

Do your best! Rise to the challenge! Live and learn!

