Set = a well-defined collection of objects

 $G = \{\Delta, \triangle, \Box\}$ U.S. Military Services = M = { ____, ____, ____, ____, ____}

States whose name begins with the letter L

3 ways to describe a set:

(1) complete list of elements
$$A = \{a, b, c, d, e, f, g, \dots, x, y, z\}$$

 $a ___ A \qquad 1 ___ A$

(2) a phrase

the set of Math 0997 students born in February

the set of Math 0997 students with more than one pet

(3) set-builder notation

Cardinality of a set $n(G) = _$ $n(M) = _$ $n(A) = _$

Set operations: Given a universal set, U Use Venn diagrams to "visualize".
(1) Set Complement = the set of elements in the universal set not in the original set

U =
$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

A = $\{0, 2, 3, 5, 6, 8\}$
A' or $\overline{A} =$ _____
B = $\{0, 1, 4, 9\}$
B' or $\overline{B} =$ _____

(2) Intersection

 $A \cap B$ = the set of elements in A and in B Find $A \cap B$.

P = the students in a PHED class	
M = the students in math class	Find $P \cap M$.

(3) Union

 $A \cup B$ = the set of elements in A or in B (or in both) the "inclusive or" $A = \{0, 2, 3, 5, 6, 8\}$ $A \cup B =$ _____ $B = \{0, 1, 4, 9\}$

P = the students in a PHED class	
M = the students in math class	Find $P \cup M$.

(4) Set Difference

 $B - A = B \cap \overline{A}$ = the set of elements in B that are not in A A - B = A $\cap \overline{B}$ = the set of elements in A that are not in B Find B - A and A - B.

Subsets

 $B ⊆ A ext{ every element of B is an element of A} n(B) ≤ n(A)$ $B ⊂ A ext{ every element of B is an element of A and B ≠ A} n(B) < n(A)$

Find all of the subsets of {a, b, c}. How many are proper?

Exercises:

1. If set $B = \{1, i, n, e, a, r\}$, find the cardinality of B. n(B) =_____

Fill in the blank with the symbol (\in or \notin)that makes the statement true:

- 2. 4 (0, 1, 2, 3, 4) 3. 17 ($x \mid x = 3n + 1, n \in N$)
- 4. How many proper subsets does the set {0, 1, 2, 3} have? Multiple choice.
 (a) 4 (b) 6 (c) 15 (d) 16 (e) None of these

If A = $\{1, 3, 5, 7, 9\}$, B = $\{0, 1, 4, 9\}$, and the universal set U = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, find

- 5. $A \cup B$ 6. $A \cap B$ 7. \overline{A}
- 8. A-B 9. $\overline{(A \cup B)}$ 10. $A \cup \overline{B}$

Note: For #5–10, you may choose to use the following Venn diagram.

