Set = a well-defined collection of objects

$$
\mathrm{G}=\{\Delta, \Delta, \square\}
$$

U.S. Military Services $=\mathrm{M}=\{$ \qquad , \qquad , \qquad , \qquad , \qquad \}

States whose name begins with the letter L

3 ways to describe a set:
(1) complete list of elements

$$
A=\{a, b, c, d, e, f, g, \ldots, x, y, z\}
$$

a \qquad A \qquad
A
(2) a phrase
the set of Math 0997 students born in February the set of Math 0997 students with more than one pet
(3) set-builder notation

$$
\begin{aligned}
& \{\mathrm{x} \mid \mathrm{x}=2 \mathrm{n}, \mathrm{n} \in \mathrm{~N}\}=\{ \\
& \{\mathrm{x} \mid \mathrm{x}=2 \mathrm{n}+1, \mathrm{n} \in \mathrm{~N}\}=\{ \\
& \left\{\mathrm{x} \mid \mathrm{x}=2^{\mathrm{n}}, \mathrm{n} \in \mathrm{~W}\right\}=\{
\end{aligned}
$$

Cardinality of a set $\quad n(G)=$ \qquad

$$
\mathrm{n}(\mathrm{M})=
$$ $n(A)=$

Set operations: Given a universal set, U Use Venn diagrams to "visualize".
(1) Set Complement $=$ the set of elements in the universal set not in the original set

$$
\begin{aligned}
& U=\{0,1,2,3,4,5,6,7,8,9\} \\
& A=\{0,2,3,5,6,8\} \\
& B=\{0,1,4,9\}
\end{aligned}
$$

$$
\mathrm{A}^{\prime} \text { or } \overline{\mathrm{A}}=
$$

\qquad

$$
\mathrm{B}^{\prime} \text { or } \overline{\mathrm{B}}=
$$

\qquad
(2) Intersection
$A \cap B=$ the set of elements in A and in $B \quad$ Find $A \cap B$.
$\mathrm{P}=$ the students in a PHED class
$\mathrm{M}=$ the students in math class
Find $\mathrm{P} \cap \mathrm{M}$.
(3) Union
$\mathrm{A} \cup \mathrm{B}=$ the set of elements in A or in B (or in both) the "inclusive or"
$A=\{0,2,3,5,6,8\}$
$\mathrm{A} \cup \mathrm{B}=$ \qquad
$B=\{0,1,4,9\}$
$\mathrm{P}=$ the students in a PHED class
$\mathrm{M}=$ the students in math class
Find $P \cup M$.
(4) Set Difference
$\mathrm{B}-\mathrm{A}=\mathrm{B} \cap \overline{\mathrm{A}}=$ the set of elements in B that are not in A
$\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \overline{\mathrm{B}}=$ the set of elements in A that are not in B
Find B - A and A - B.

Subsets
$B \subseteq A \quad$ every element of B is an element of $A \quad n(B) \leq n(A)$
$B \subset A \quad$ every element of B is an element of A and $B \neq A \quad n(B)<n(A)$

Find all of the subsets of $\{a, b, c\}$. How many are proper?

Exercises:

1. If set $B=\{l, i, n, e, a, r\}$, find the cardinality of $B . n(B)=$ \qquad

Fill in the blank with the symbol $(\in$ or $\notin)$ that makes the statement true:
2. \qquad $\{0,1,2,3,4\}$
3. 17 \qquad $\{x \mid x=3 n+1, n \in N\}$
4. How many proper subsets does the set $\{0,1,2,3\}$ have? Multiple choice.
(a) 4
(b) 6
(c) 15
(d) 16
(e) None of these

If $A=\{1,3,5,7,9\}, B=\{0,1,4,9\}$, and the universal set $U=\{0,1,2,3,4,5,6$, $7,8,9\}$, find
5. $A \cup B$
6. $A \cap B$
7. $\overline{\mathrm{A}}$
8. $\mathrm{A}-\mathrm{B}$
9. $(\mathrm{A} \cup \mathrm{B})$
10. $\mathrm{A} \cup \overline{\mathrm{B}}$

Note: For \#5-10, you may choose to use the following Venn diagram.

