Number Sets

Natural	$N = \{1, 2, 3, 4, 5, \ldots\}$
Whole	$W = \{0, 1, 2, 3, 4, 5, \ldots\}$
Integers	$Z = \{\ldots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \ldots\}$
Rational	the set of real numbers that can be expressed as a ratio of integers
	Note: Both terminating (e.g., 5.625) and repeating decimal numbers (e.g., $1.\overline{23}$) are rational.
Irrational	the set of real numbers that cannot be expressed as a ratio of integers
Real	the union of the rational and irrational number sets

Symbols

 $2+2=4 \qquad 7\neq 2^3 \qquad 5>4.9 \qquad 2\geq 2 \qquad -3<-1 \qquad 0.3\leq 1$

Complete the table. Use Y for yes, and N for no.

	⁶ / ₃	-4.5	$-1\frac{1}{6}$	$\sqrt{16}$	π	0	23	$\sqrt{2}$
1. Rational								
2. Irrational								
3. Whole								
4. Natural								
5. Integers								
6. Real								

Absolute value |x| = abs(x) = the <u>distance</u> from 0 to x on the real number line

7.

(a) $|-5| _ 5$ (b) $|-13| _ |-12|$ (c) $-13 _ -12$

Solve | x | = 12 for x. x = _____ 8.