Linear Functions \& Relations

Quadratic Functions

The Quadratic Formula

Slope-intercept form
Standard form
Point-slope form

$$
\begin{aligned}
& y=f(x)=m x+b \\
& A x+B y=C \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

Slope formula:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Standard form
Vertex form
$y=a x^{2}+b x+c$
$y=a(x-h)^{2}+k$

The solutions of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0, \mathrm{a} \neq 0$ are given by

$$
\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

$$
A=P\left(1+\frac{A P R}{n}\right)^{n \cdot Y} \quad \mathrm{~A}=\mathrm{Pe}^{\mathrm{APR} \cdot \mathrm{Y}}
$$

$\mathrm{A}=$ accumulated amount, $\mathrm{P}=$ Principal, APR = annual percentage rate, $\mathrm{Y}=$ number of years, $\mathrm{n}=$ number of annual compoundings

Savings Plan: $A=P M T \frac{\left(1+\frac{A P R}{n}\right)^{n \cdot Y}-1}{\left(\frac{A P R}{n}\right)}$

$$
P M T=\frac{A \times\left(\frac{A P R}{n}\right)}{\left(1+\frac{A P R}{n}\right)^{n \cdot Y}-1}
$$

$\mathrm{A}=$ accumulated amount, $\mathrm{PMT}=$ regular payment, APR = annual percentage rate, $\mathrm{n}=$ number of annual payments, $\mathrm{Y}=$ number of years

$$
\text { Total return }=\frac{(A-P)}{P} \times 100 \% \quad \text { Annual return }=\left(\frac{A}{P}\right)^{1 / Y}-1
$$

Laws of Exponents

$$
\begin{gathered}
a^{s} \cdot a^{t}=a^{s+t} \quad \frac{a^{s}}{a^{t}}=a^{s-t} \quad\left(a^{s}\right)^{t}=a^{s \cdot t} \quad(\mathrm{ab})^{s}=a^{s} \cdot b^{s} \\
1^{s}=1 \quad \mathrm{a}^{-s}=\frac{1}{a^{s}}=\left(\frac{1}{a}\right)^{s} \quad \mathrm{a}^{0}=1
\end{gathered}
$$

Properties for Logarithms

1. $\log _{a}(M \cdot N)=\log _{a} M+\log _{a} N$
2. $\log _{a} M=\frac{\log M}{\log a}=\frac{\ln M}{\ln a}$
3. $\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$
4. $\log _{a} M^{p}=p \cdot \log _{a} M$

Do your best!
Rise to the challenge! Live and learn!

