Linear Equations, Graphs, and Applications

1. Record the coordinates and the quadrants (or axes) of the following points.

F _____

D _____

2. On the same plane above, label these additional points. Give their quadrants (or axes) below.

G (-3, -4.5) _____

H (5, 0) _____

I (-10, 10)

J (2, 2) _____

3. Complete the table below, and graph the line.

y = -2x

X	y
-3	
0	
	0

Complete the table below, and graph the line. 4.

$$y = \frac{1}{3}x + 1$$

	1
X	\mathbf{y}
-3	
0	
3	

- 5. Complete the table below, and graph the line.

$$y = -x + 4$$

X	y
0	
1	
2	

-10

6. Complete the table below, and graph the line.

$$y = \frac{1}{2}x - 6$$

X	y
-2	
0	
2	
4	

7. Complete the table below, and graph the line.

$$-4x + 2y = 8$$

X	y

8. Complete the tables below, and graph the lines.

(a)		(b)	
X =	= 5	y =	-2
X	y	X	y

The graph in (a) is ______; the graph is (b) is _____.

- 9. Change the linear equation y 2 = 3(x + 1) to
 - (a) slope-intercept form
- (b) general form

- (c) What is the slope of this line? _____
- (d) Give the ordered pair for any point on the line.
- (e) Give the intercepts.

x-intercept: _____

y-intercept: _____

10. Complete the table for the following "special cases".

Equation	Slope	x-intercept	y-intercept
(a) $y = -1$			
(b) $x = 7$			
(c) y = x			

11. For parallel lines, the slopes are ______, and the y-intercepts are different.

For perpendicular lines, the slopes are _____ and ____ and ____ . Another way to express this is the product of their slopes is _____ .

On the diagrams below put a reasonable set of slope numbers on each line.

12. An **application** involving linear functions involves the relationship between Celsius and Fahrenheit temperature measurements. A common formula (in slope-intercept form) is _______.

Another application involves uniform motion. Write the linear formula relating distance (d) and time (t) for a fixed rate of speed, r=72 mph.

Another common application involves cost structures. For example, an automobile mechanic may charge \$148 for parts and \$50 an hour for labor. Write the corresponding formula, with C for cost and t for time in hours.

Determine whether the given function is linear or nonlinear. If it is linear, determine the slope.

X	y
-3	12
0	10
3	8
6	6

13.

Graph the line with slope $-\frac{1}{4}$ that 14. passes through the point given by (-4, 7).

Then find its equation in slope-intercept form.

For the graph of y = -2x + 4, find the intercepts. Use ordered pairs. 15.

x-intercept _____

y-intercept _____

For the line given by the equation 2x - 3y = 9, find the 16.

slope _____

x-intercept _____ y-intercept _____

