

1. Record the coordinates and the quadrants (or axes) of the following points.
\qquad
2. On the same plane above, label these additional points. Give their quadrants (or axes) below.

G	$(-3,-4.5)$
H	$(5,0)$
I	$(-10,10)$
J	$(2,2)$

3. Complete the table below, and graph the line. $y=-2 x$

\mathbf{x}	\mathbf{y}
-3	
0	
	0

4. Complete the table below, and graph the line.
$\mathrm{y}=\frac{1}{3} \mathrm{x}+1$

\mathbf{x}	\mathbf{y}
-3	
0	
3	

5. Complete the table below, and graph the line. $y=-x+4$

\mathbf{x}	\mathbf{y}
0	
1	
2	

6. Complete the table below, and graph the line.

$$
y=\frac{1}{2} x-6
$$

\mathbf{x}	\mathbf{y}
-2	
0	
2	
4	

7. Complete the table below, and graph the line.

$$
-4 x+2 y=8
$$

\mathbf{x}	\mathbf{y}

8. Complete the tables below, and graph the lines.

(a)		(b)	
$x=5$		$y=-2$	
\mathbf{x}	\mathbf{y}	\mathbf{x}	\mathbf{y}

The graph in (a) is \qquad ; the graph is (b) is \qquad .
9. Change the linear equation $y-2=3(x+1)$ to
(a) slope-intercept form
(b) general form
(c) What is the slope of this line? \qquad
(d) Give the ordered pair for any point on the line. \qquad
(e) Give the intercepts.
\qquad
\qquad
10. Complete the table for the following "special cases".

Equation	Slope	x-intercept	y-intercept
(a) $y=-1$			
(b) $x=7$			
(c) $y=x$			

11. For parallel lines, the slopes are \qquad , and the y-intercepts are different.

For perpendicular lines, the slopes are \qquad and . Another way to express this is the product of their slopes is \qquad .

On the diagrams below put a reasonable set of slope numbers on each line.

12. An application involving linear functions involves the relationship between Celsius and Fahrenheit temperature measurements. A common formula (in slope-intercept form) is \qquad .

Another application involves uniform motion. Write the linear formula relating distance (d) and time (t) for a fixed rate of speed, $\mathrm{r}=72 \mathrm{mph}$.

Another common application involves cost structures. For example, an automobile mechanic may charge $\$ 148$ for parts and $\$ 50$ an hour for labor. Write the corresponding formula, with C for cost and t for time in hours.
13. Determine whether the given function is linear or nonlinear. If it is linear, determine the slope.

\mathbf{x}	\mathbf{y}
$\mathbf{- 3}$	12
$\mathbf{0}$	10
$\mathbf{3}$	8
$\mathbf{6}$	6

14. Graph the line with slope $-\frac{1}{4}$ that passes through the point given by $(-4,7)$.

Then find its equation in slope-intercept form.

15. For the graph of $y=-2 x+4$, find the intercepts. Use ordered pairs. x-intercept \qquad y-intercept \qquad
16. For the line given by the equation $2 x-3 y=9$, find the slope \qquad x-intercept \qquad y-intercept \qquad
17. Chelsea earns $\$ 350$ per week plus 2.5% of her weekly sales. For a full week of hard (but satisfying!) work, she earned a total of $\$ 567.50$. What were her sales for the week? Use a linear equation to solve this application.
18. Find the equation of the line (in slope-intercept form)
(a) Horizontal and containing the point $(-5,3)$
(b) Perpendicular to $y=3 x-5$ and passing through the point $(3,-2)$.
(c) Passing through the points $(3,4)$ and $(-3,0)$

