Exponent Rules OR Exponents Rule!

Laws of exponents for real numbers a and b and integers m and n:

Rule	Example	Rule	Example
$a^m \cdot a^n = a^{m+n}$	$5^2 \cdot 5^4 = 5^6$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{2}{3}\right)^4 = \frac{2^4}{3^4} = \frac{16}{81}$
$\frac{a^m}{a^n} = a^{m-n}$	$\frac{\mathbf{x}^{12}}{\mathbf{x}^4} = \mathbf{x}^8$	$a^{-n} = \frac{1}{a^n}$	$5^{-3} = \frac{1}{5^3} = \frac{1}{125}$
$\mathbf{a}^0 = 1$	$10^0 = 1$	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$	$\left(\frac{2}{3}\right)^{-4} = \left(\frac{3}{2}\right)^4 = \frac{3^4}{2^4} = \frac{81}{16}$
$(a \cdot b)^n = a^n \cdot b^n$	$(5x)^2 = 5^2 \cdot x^2 = 25x^2$	(u) (a)	(3) (2) 2 10
$\left(a^{m}\right)^{n}=a^{m+n}$	$\left(3^2\right)^4 = 3^8$	$\frac{1}{a^{-n}} = a^n$	$\frac{1}{x^{-2}} = x^2$

NOTE: These exercises involve the first five rules involving whole number exponents.

- Evaluate the following expressions. Show the exponent meaning in your work. 1.
 - (a) 2^3

(b) $(-4)^2$

 $(c) (-6)^0$

(d) $3 \cdot 4^2$

(e) $\left(\frac{3}{2}\right)^3$

(f) $\left(\frac{1}{4}\right)^{-2}$

- Evaluate each expression for the given value of x. Show the substitution and each "order of operation 2. step toward the solution.

 - (a) $2x^2$; x = 5 (b) $(2x)^2$; x = 5
- (c) $\frac{x^4}{4}$; x = -2 (d) $5 2x^2$; x = -3

4. Simplify. Use only positive exponents in your answers. Show the exponent rules steps.

(a)
$$x^5 \cdot x^3 \cdot x^2$$

(b)
$$\frac{y^{10}}{y}$$

(c)
$$\left(\frac{x}{3}\right)^2$$

$$(d) (-4xy^3)^2$$

(e)
$$(b^2)^3$$

(f)
$$\frac{-24x^2y^6z}{-3x^2y^4z^3}$$

5. Make up three problems of your own, and show correct use of the exponent rules toward the solution.

(a)

(b)

(c)