CGI: Children's Solution Strategies

As the most basic strategies, children use physical objects (counters), pictures, tally marks, or fingers to directly model the action or relationships given in the problem.

Over time, children's strategies become more abstract and efficient. They replace direct modeling strategies with counting strategies which in turn are replaced by number fact strategies or invented algorithms.

I. Direct Modeling

Problem	Strategy Description		
Join (Result Unknown)	Joining All		
Ellen had 3 tomatoes. She picked 9 more tomatoes in her	The child constructs a set of 3 objects and a set of 9 objects.		
momma's garden. How many tomatoes does she have	Then they find the answer by counting all the objects in the		
now?	two sets.		
Join (Change Unknown)	Joining To		
Chuck has 9 dollars. How many more dollars does he need	The child constructs a set of 9 objects. Then they add		
to buy a stuffed animal that costs 12 dollars?	objects to this set until there is a total of 12 objects. They		
	find the answer by counting the number of objects added.		
Separate (Result Unknown)	Separating From		
There were 12 otters playing in the water. Nine otters	The child constructs a set of 12 objects and then removes 9		
swam away. How many otters were still playing in the	objects. They find the answer by counting the remaining		
water?	objects.		
Separate (Change Unknown)	Separating To		
There were 12 children on the school bus. Some children	The child counts out a set of 12 objects. Then they remove		
got off. Now there are 8 children on the bus. How many	objects from the set until the number of objects remaining		
children got off the bus?	is equal to 8. Then they find the answer by counting the		
	objects they removed.		
Compare (Difference Unknown)	Matching		
Megan has 4 stickers. Randy has 11 stickers. How many	The child makes a set of 4 objects and a set of 11 objects.		
more stickers does Randy have than Megan?	The two sets are matched one-to-one until one set is used		
	up. They find the answer by counting the unmatched		
lain (Chart University)	Trial and Free		
Join (Start Unknown)	The shild constructs a set of philosts, adds a set of C philosts		
Alyssa had some books. She went to the library and got 6	The child constructs a set of objects, adds a set of 6 objects		
hooks did she have to start with?	to the set, and counts the objects in the resulting set. If the		
books and she have to start with:	is the answer. If it is not 15, they try a different initial set		
Multiplication	Grouping		
Bart has 4 hoxes of pencils. There are 6 pencils in each hox	Make 4 groups with 6 counters in each group. Count all the		
How many pencils does he have in all?	counters to find the answer.		
Measurement Division	Measurement		
Bart has 24 pencils. They are packed 6 pencils to a box.	Put 24 counters into groups with 6 counters in each group.		
How many boxes of pencils does he have?	Count the groups to find the answer.		
Partitive Division	Partitioning/Dealing		
Bart has 6 boxes of pencils with the same number of	Divide 24 counters into 6 groups with the same number of		
pencils in each box. Altogether he has 24 pencils. How	counters in each group. Count the counters in one group to		
many pencils are in each box?	find the answer.		

II. Counting

Problem	Strategy Description
Join (Result Unknown)	Counting On From First
Ellen had 3 tomatoes. She picked 9 more tomatoes in her	The child begins counting with 3 and continues on for 9 more
momma's garden. How many tomatoes does she have	counts. The answer is the last number in the counting
now?	sequence (i.e., 4, 5, 6, 7, 8, 9, 10, 11, 12; 12 is the answer).

Join (Result Unknown)	Counting On From Larger			
Ellen had 3 tomatoes. She picked 9 more tomatoes in her	The child begins counting with 9 and continues on for 3 more			
momma's garden. How many tomatoes does she have	counts. The answer is the last number in the counting			
now?	sequence (i.e., 10, 11, 12; 12 is the answer).			
Join (Change Unknown)	Counting On To			
Chuck has 9 dollars. How many more dollars does he need	The child counts forward starting from 9 and continues until			
to buy a stuffed animal that costs 12 dollars?	reaching 12. The answer is the number of counting works in			
	the sequence (i.e., 10, 11, 12; the answer is 3).			
Separate (Result Unknown)	Counting Down			
There were 12 otters playing in the water. Nine seals swam	The child counts backward starting from 12. The sequence			
away. How many otters were still playing in the water?	continues for 9 more counts. The last number in the counting			
	sequence is the answer (i.e., 11, 10, 9, 8, 7, 6, 5, 4, 3; 3 is the			
	answer).			
Separate (Change Unknown)	Counting Down To			
There were 12 children on the school bus. Some children	The child counts backward from 12, and continues until			
got off. Now there are 8 children on the bus. How many	reaching 8. The answer is the number of counting words in the			
children got off the bus?	sequence (i.e., 11, 10, 9, 8; the answer is 4).			
Multiplication	Repeated Addition/Skip Counting			
Bart has 4 boxes of pencils. There are 6 pencils in each box.	The child counts 4, 8, 12, 16, 20, 24. With each count, the child			
How many pencils does he have in all?	extends one finger. When they have extended 6 fingers, they			
	stop. The answer is 24.			
Measurement Division	Repeated Subtraction/Skip Counting			
Bart has 24 pencils. They are packed 6 pencils to a box.	The child counts 4, 8, 12, 16, 20, 24. With each count, the child			
How many boxes of pencils does he have?	extends one finger. When they have counted to 24, they			
	notice that they have extended 6 fingers. The answer is 6.			
Partitive Division	Trial and Error Partitioning/Dealing			
Bart has 6 boxes of pencils with the same number of	The child counts 3, 6, 9, 12, 15, 18, with a finger extended for			
pencils in each box. Altogether he has 24 pencils. How	each count until they reach 6 and decides that 3 is not			
many pencils are in each box?	enough. Then they count 4, 8, 12, 16, 20, 24. The answer is 4.			

III. Number Facts/Invented Algorithms

Students display base-10 understanding as they invent, derive, and recall number facts. Encourage and build on this creativity and intuition! The list below is a small sampling of what students may invent.

Decade Counting/ Incrementing	58 + 47 50, 60, 70, 80, 90, 98, 100, 105 +10 +10 +10 +8 +2 +5				
Compensating	58 + 47 = (58 + 2) + (47 – 2) = 60 + 45 = 105				
	83 - 38 = (83 + 2) - (38 + 2) = 85 - 40 = 45				
Combining 10s and 1s	58 + 47	50 + 40 = 90	8 + 7 = 15	90 + 15 = 105	
Incrementing	58 + 47	58, 68, 78, 88, 98, 100, 105 +10 +10 +10 +10 +2 +5			
	83 - 38	83 - 30 = 53	53 – 3 = 50	50 – 5 = 45	
Distributive Property	9 × 32 = 9 × (30 + 2) = 9 × 30 + 9 × 2 = 270 + 18 = 288				
Partial Products	58 × 47 = 50 × 40 + 50 × 7 + 8 × 40 + 8 × 7 = 2000 + 350 + 320 + 56 = 2,726				

Source: Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (2015). *Children's mathematics: Cognitively guided instruction.* Heinemann, Portsmouth, NH.