
A bounded jump for the
bounded Turing degrees

Bernard Anderson and Barbara Csima

University of Waterloo

October 4, 2010

www.math.uwaterloo.ca/∼b7anders



Computability Theory

Subsets of the natural numbers
In this talk, we will work with subsets of the natural numbers.

Infinite binary strings

We will often identify these sets with infinite binary strings

If n ∈ A then we say A(n) = 1. If n /∈ A then we say A(n) = 0.

We use the notation A �� n to denote the elements of A less than
or equal to n.

For example, if 3 and 5 are the elements of A �� 5, then the string
for A starts 00101 . . .



Computability Theory

Subsets of the natural numbers
In this talk, we will work with subsets of the natural numbers.

Infinite binary strings

We will often identify these sets with infinite binary strings

If n ∈ A then we say A(n) = 1. If n /∈ A then we say A(n) = 0.

We use the notation A �� n to denote the elements of A less than
or equal to n.

For example, if 3 and 5 are the elements of A �� 5, then the string
for A starts 00101 . . .



Computability

Computable Sets
We say a set is computable if a sufficiently powerful computer
can determine if any number is in the set, given arbitrarily
large finite amounts of time and memory space.

Definition of computable
Although the above definition is vague, there are several
precise definitions of a set being computable. These definitions
have been shown to be equivalent.



Enumerating Turing reductions

Listing programs

We can view programs for our computer as finite strings.

We can use this to find a computable algorithm that lists all
possible programs.

Of course, most of these programs will make no sense.

We say a program is total if for every number we input it
outputs a number and halts. Otherwise, we say it is partial.



Enumerating Turing reductions

Listing programs

We can view programs for our computer as finite strings.

We can use this to find a computable algorithm that lists all
possible programs.

Of course, most of these programs will make no sense.

We say a program is total if for every number we input it
outputs a number and halts. Otherwise, we say it is partial.



The halting set

Notation

Let ϕn denote the nth program.

If ϕn halts when run with input x we say it converges, denoted
ϕn(x)↓. Otherwise it diverges, denoted ϕn(x)↑.



The halting set (continued)

The halting set

We define the halting set (also called zero jump) to be the set of
numbers n such that the nth program halts when run with
input n.

Formally, ∅′ = {x | ϕx(x)↓}.

A diagonalization argument can be used to show that ∅′ is not
computable.



The halting set (continued)

The halting set

We define the halting set (also called zero jump) to be the set of
numbers n such that the nth program halts when run with
input n.

Formally, ∅′ = {x | ϕx(x)↓}.

A diagonalization argument can be used to show that ∅′ is not
computable.



Computable Enumerability

Computable Enumerability

We say a set A is computably enumerable (c.e.) if we can
computably (effectively) list the elements of the set.

We can see that ∅′ is c.e. We enumerate n into ∅′ when we
observe ϕn(n)↓.



Computable Enumerability

Computable Enumerability

We say a set A is computably enumerable (c.e.) if we can
computably (effectively) list the elements of the set.

We can see that ∅′ is c.e. We enumerate n into ∅′ when we
observe ϕn(n)↓.



Relative computability

Oracle machines

Let A be a set, and suppose our computer can obtain
information about A as part of its computation process.

If this computer can calculate a set B then we say A can
compute B.

We denote this ΦA = B where Φ is our oracle machine.



Relative computability (continued)

Turing degrees

If A can compute B we also say B is Turing below A and denote
it B ≤T A.

We note ≤T is an equivalence relation, and call the equivalence
classes Turing degrees.



Relative computability (continued)

Turing degrees

If A can compute B we also say B is Turing below A and denote
it B ≤T A.

We note ≤T is an equivalence relation, and call the equivalence
classes Turing degrees.



The Turing jump

Notation
We let ΦA

n denote the nth program using A as an oracle.

Turing Jump

We define the Turing jump of A by A′ = {x | ΦA
x (x)↓}.

As before, a diagonalization argument shows A cannot
compute A′. We note A′ is c.e. in the oracle A, denoted c.e.(A).

The Turing jump is one of the most commonly studied items in
Computability Theory. We examine its properties.



The Turing jump

Notation
We let ΦA

n denote the nth program using A as an oracle.

Turing Jump

We define the Turing jump of A by A′ = {x | ΦA
x (x)↓}.

As before, a diagonalization argument shows A cannot
compute A′. We note A′ is c.e. in the oracle A, denoted c.e.(A).

The Turing jump is one of the most commonly studied items in
Computability Theory. We examine its properties.



The Turing jump

Notation
We let ΦA

n denote the nth program using A as an oracle.

Turing Jump

We define the Turing jump of A by A′ = {x | ΦA
x (x)↓}.

As before, a diagonalization argument shows A cannot
compute A′. We note A′ is c.e. in the oracle A, denoted c.e.(A).

The Turing jump is one of the most commonly studied items in
Computability Theory. We examine its properties.



One to one reductions

1-reductions

We say A ≤1 B if there is a computable injection f : ω → ω such
that n ∈ A iff f (n) ∈ B.

This is a very strong reduction. A ≤1 B implies A ≤T B.

We will see it is also stronger than other reducibilities we define
later (bT and tt).



One to one reductions

1-reductions

We say A ≤1 B if there is a computable injection f : ω → ω such
that n ∈ A iff f (n) ∈ B.

This is a very strong reduction. A ≤1 B implies A ≤T B.

We will see it is also stronger than other reducibilities we define
later (bT and tt).



Properties of the Turing jump

Basic properties of the Turing jump

Strictly increasing: A <T A′.

Order preserving: A ≤T B implies A′ ≤1 B′.

Equivalent to similar forms:

Let KA
0 = {〈x, y〉 | ΦA

x (y)↓}. Then A′ ≡1 KA
0 .



Properties of the Turing jump

Basic properties of the Turing jump

Strictly increasing: A <T A′.

Order preserving: A ≤T B implies A′ ≤1 B′.

Equivalent to similar forms:

Let KA
0 = {〈x, y〉 | ΦA

x (y)↓}. Then A′ ≡1 KA
0 .



Properties of the Turing jump

Basic properties of the Turing jump

Strictly increasing: A <T A′.

Order preserving: A ≤T B implies A′ ≤1 B′.

Equivalent to similar forms:

Let KA
0 = {〈x, y〉 | ΦA

x (y)↓}. Then A′ ≡1 KA
0 .



Properties of the Turing Jump (continued)

Inversion results
I (Friedberg) Let X ≥T ∅′. Then there is a Y such that

X ≡T Y′ ≡T Y⊕∅′.

I (Shoenfield) Let X ≥T ∅′ be such that X is c.e.(∅′). Then
there is a Y ≤T ∅′ such that X ≡T Y′.

I (Sacks) The Y in the above result can be made to be c.e.



Properties of the Turing Jump (continued)

Inversion results
I (Friedberg) Let X ≥T ∅′. Then there is a Y such that

X ≡T Y′ ≡T Y⊕∅′.

I (Shoenfield) Let X ≥T ∅′ be such that X is c.e.(∅′). Then
there is a Y ≤T ∅′ such that X ≡T Y′.

I (Sacks) The Y in the above result can be made to be c.e.



Properties of the Turing Jump (continued)

Inversion results
I (Friedberg) Let X ≥T ∅′. Then there is a Y such that

X ≡T Y′ ≡T Y⊕∅′.

I (Shoenfield) Let X ≥T ∅′ be such that X is c.e.(∅′). Then
there is a Y ≤T ∅′ such that X ≡T Y′.

I (Sacks) The Y in the above result can be made to be c.e.



Arithmetic hierarchy

Σ1, Π1, and ∆1

We say a set A is Σ1 if there is a computable R such that

m ∈ A iff ∃x [〈m, x〉 ∈ R].

We say A is Π1 if m ∈ A iff ∀x [〈m, x〉 ∈ R].

We say a set A is ∆1 if it is both Σ1 and Π1.

It can be shown that A is Σ1 iff A is c.e. and that A is ∆1 iff A is
computable.



Arithmetic hierarchy

Σ1, Π1, and ∆1

We say a set A is Σ1 if there is a computable R such that

m ∈ A iff ∃x [〈m, x〉 ∈ R].

We say A is Π1 if m ∈ A iff ∀x [〈m, x〉 ∈ R].

We say a set A is ∆1 if it is both Σ1 and Π1.

It can be shown that A is Σ1 iff A is c.e. and that A is ∆1 iff A is
computable.



Arithmetic hierarchy

Σ1, Π1, and ∆1

We say a set A is Σ1 if there is a computable R such that

m ∈ A iff ∃x [〈m, x〉 ∈ R].

We say A is Π1 if m ∈ A iff ∀x [〈m, x〉 ∈ R].

We say a set A is ∆1 if it is both Σ1 and Π1.

It can be shown that A is Σ1 iff A is c.e. and that A is ∆1 iff A is
computable.



Arithmetic hierarchy (continued)

Σn, Πn, and ∆n

Suppose m ∈ A iff Q1x1 . . . Qnxn [〈m, x1, . . . , xn〉 ∈ R] where
Q1 . . . Qn denotes n alternating quantifiers.

If Q1 is ∃ we say A is Σn. If Qn is ∀ then A is Πn.

For example, A is Σ3 means m ∈ A iff
∃x1∀x2∃x3 [〈m, x1, x2, x3〉 ∈ R].

A is ∆n if it is both Σn and Πn.



Arithmetical hierarchy and the Turing jump

Notation
Let A denote the set such that n ∈ A iff n /∈ A.
Let ∅(n) denote the nth Turing jump (i.e. ∅(2) is the jump of ∅′).

Post’s Theorem
I A is ∆n iff A ≤T ∅(n−1).

I A is Σn iff A is c.e. (∅(n−1)).

I A is Πn iff A is c.e. (∅(n−1)).



Arithmetical hierarchy and the Turing jump

Notation
Let A denote the set such that n ∈ A iff n /∈ A.
Let ∅(n) denote the nth Turing jump (i.e. ∅(2) is the jump of ∅′).

Post’s Theorem
I A is ∆n iff A ≤T ∅(n−1).

I A is Σn iff A is c.e. (∅(n−1)).

I A is Πn iff A is c.e. (∅(n−1)).



Other reducibilities
Turing

Recall A is Turing below B if there is an oracle machine which
computes A from B.

A ≤T B if there is a Φ such that ΦA(n) = B(n) for all n.

Bounded Turing

If we set a computable bound on the amount of the oracle that
can be used, we have a bounded Turing reduction.

A ≤bT B if there is a Φ and a computable function f such that
ΦA��f (n)(n) = B(n) for all n.



Other reducibilities
Turing

Recall A is Turing below B if there is an oracle machine which
computes A from B.

A ≤T B if there is a Φ such that ΦA(n) = B(n) for all n.

Bounded Turing

If we set a computable bound on the amount of the oracle that
can be used, we have a bounded Turing reduction.

A ≤bT B if there is a Φ and a computable function f such that
ΦA��f (n)(n) = B(n) for all n.



Other reducibilities (continued)
Truth-table
If we add the requirement that the oracle machine is total, we
have truth-table reducibility

A ≤tt B if there is a Φ such that ΦX(n)↓ for all X and n and
ΦA(n) = B for all n.

Comparing reducibilities

A ≤1 B⇒ A ≤tt B⇒ A ≤bT B⇒ A ≤T B.

Bounded Turing reducibility is sometimes called weak
truth-table reducibility.



Other reducibilities (continued)
Truth-table
If we add the requirement that the oracle machine is total, we
have truth-table reducibility

A ≤tt B if there is a Φ such that ΦX(n)↓ for all X and n and
ΦA(n) = B for all n.

Comparing reducibilities

A ≤1 B⇒ A ≤tt B⇒ A ≤bT B⇒ A ≤T B.

Bounded Turing reducibility is sometimes called weak
truth-table reducibility.



The Turing jump on the bounded Turing degrees

Similarities of the Turing jump on the T and bT degrees

We consider the behavior of the Turing jump on the bounded
Turing degrees.

Sometimes it acts like the Turing jump on the Turing degrees.

One example where this was discovered to be the case was
strong jump inversion.



The Turing jump on the bounded Turing degrees
(continued)

Similarities of the T and bT degrees (continued)

Generic reals were used to prove strong jump inversion for the
Turing degrees.

(Friedberg) Let X ≥T ∅′. Then there is a Y such that
X ≡T Y′ ≡T Y⊕∅′.

In 1984 they were used to prove ordinary jump inversion for
the truth-table degrees:

(Mohrherr) Let X ≥tt ∅′. Then there is a Y such that X ≡tt Y′.



The Turing jump on the bounded Turing degrees
(continued)

Similarities of the T and bT degrees (continued)

Generic reals were used to prove strong jump inversion for the
Turing degrees.

(Friedberg) Let X ≥T ∅′. Then there is a Y such that
X ≡T Y′ ≡T Y⊕∅′.

In 1984 they were used to prove ordinary jump inversion for
the truth-table degrees:

(Mohrherr) Let X ≥tt ∅′. Then there is a Y such that X ≡tt Y′.



The Turing jump on the bounded Turing degrees
(continued)

Similarities of the T and bT degrees (continued)

Generic reals cannot be used for strong jump inversion in the tt
or bT case.

However, newer methods can be used to show strong jump
inversion does also hold for the truth-table and bounded
Turing degrees.

(Anderson) Let X ≥bT ∅′. Then there is a Y such that
X ≡bT Y′ ≡bT Y⊕∅′.



The Turing jump on the bounded Turing degrees
(continued)

Similarities of the T and bT degrees (continued)

Generic reals cannot be used for strong jump inversion in the tt
or bT case.

However, newer methods can be used to show strong jump
inversion does also hold for the truth-table and bounded
Turing degrees.

(Anderson) Let X ≥bT ∅′. Then there is a Y such that
X ≡bT Y′ ≡bT Y⊕∅′.



The Turing jump on the bounded Turing degrees
(continued)

Differences between the T and bT degrees

In other cases the Turing jump acts differently of the bounded
Turing degrees than it does on the Turing degrees.

For example, recall:

(Shoenfield) Let X ≥T ∅′ be such that X is c.e.(∅′). Then there is
a Y ≤T ∅′ such that X ≡T Y′.

The analogue does not hold:

(Csima, Downey, and Ng) There is a C >tt ∅′ such that C is
c.e.(∅′) but for all D ≤T ∅′ we have D′ 6≡bT C.



The Turing jump on the bounded Turing degrees
(continued)

Differences between the T and bT degrees

In other cases the Turing jump acts differently of the bounded
Turing degrees than it does on the Turing degrees.

For example, recall:

(Shoenfield) Let X ≥T ∅′ be such that X is c.e.(∅′). Then there is
a Y ≤T ∅′ such that X ≡T Y′.

The analogue does not hold:

(Csima, Downey, and Ng) There is a C >tt ∅′ such that C is
c.e.(∅′) but for all D ≤T ∅′ we have D′ 6≡bT C.



The Turing jump on the bounded Turing degrees
(continued)

Differences between the T and bT degrees

In other cases the Turing jump acts differently of the bounded
Turing degrees than it does on the Turing degrees.

For example, recall:

(Shoenfield) Let X ≥T ∅′ be such that X is c.e.(∅′). Then there is
a Y ≤T ∅′ such that X ≡T Y′.

The analogue does not hold:

(Csima, Downey, and Ng) There is a C >tt ∅′ such that C is
c.e.(∅′) but for all D ≤T ∅′ we have D′ 6≡bT C.



Motivation

Finding a bounded jump

Can we find a “bounded” jump operator which corresponds to
the definition of the bounded Turing degrees?

We would want such an operator to interact with the bounded
Turing degrees in a manner analogous to the interaction of the
Turing jump with the Turing degrees.



Motivation

Finding a bounded jump

Can we find a “bounded” jump operator which corresponds to
the definition of the bounded Turing degrees?

We would want such an operator to interact with the bounded
Turing degrees in a manner analogous to the interaction of the
Turing jump with the Turing degrees.



Motivation (continued)

Desired properties

I Limited use of oracle

I Equivalent to similar operators

I Strictly increasing

I Order preserving

I Distinct from known operators



Bounded jump

Defining the bounded jump

We will define the bounded jump to be similar to the Turing
jump.

However, we will restrict the use of the oracle for n to the
highest possible value of ϕi(n) for some i ≤ n.



Bounded jump (continued)

Definition
Ab = {x | ∃ i < x[ϕi(x)↓ ∧ ΦA��ϕi(x)

x (x)↓]}.

We let Anb denote the n-th bounded jump.



Similar operators

A more general form
The bounded jump is equivalent to a more general form.

Definition
Ab0 = {〈e, i, j〉 | ϕi(j)↓ ∧ ΦA��ϕi(j)

e (j)↓}.

Theorem

1. Ab0 ≤1 Ab

2. Ab ≤tt Ab0

3. There exists A such that Ab 6≤1 Ab0



Similar operators

A more general form
The bounded jump is equivalent to a more general form.

Definition
Ab0 = {〈e, i, j〉 | ϕi(j)↓ ∧ ΦA��ϕi(j)

e (j)↓}.

Theorem

1. Ab0 ≤1 Ab

2. Ab ≤tt Ab0

3. There exists A such that Ab 6≤1 Ab0



Similar operators (continued)

A simple form
A simplified form does not work as a jump operator.

Definition
Ai = {x | ΦA��x

x (x)↓}

Remark
Let A ≥bT ∅′. Then Ai ≤bT A.



Properties

Basic properties

1. ∅b ≡1 ∅′

2. A ≤1 Ab

3. Ab ≤1 A′ (since Ab is c.e.(A))



Properties (continued)

Strictly increasing

Theorem
Ab 6≤bT A

Order preserving

Theorem
A ≤bT B⇒ Ab0 ≤1 Bb0

Corollary

1. A ≤bT B⇒ Ab ≤tt Bb

2. ∅′ ≤tt Ab



Properties (continued)

Strictly increasing

Theorem
Ab 6≤bT A

Order preserving

Theorem
A ≤bT B⇒ Ab0 ≤1 Bb0

Corollary

1. A ≤bT B⇒ Ab ≤tt Bb

2. ∅′ ≤tt Ab



Properties (continued)

Strictly increasing

Theorem
Ab 6≤bT A

Order preserving

Theorem
A ≤bT B⇒ Ab0 ≤1 Bb0

Corollary

1. A ≤bT B⇒ Ab ≤tt Bb

2. ∅′ ≤tt Ab



Properties (continued)

Ab and A′

Proposition
Ab ≡T A⊕∅′

Corollary

1. If A′ 6≤T A⊕∅′ then A′ 6≤T Ab

2. If A ≥T ∅′ then Ab ≡T A



Properties (continued)

Ab and A′

Proposition
Ab ≡T A⊕∅′

Corollary

1. If A′ 6≤T A⊕∅′ then A′ 6≤T Ab

2. If A ≥T ∅′ then Ab ≡T A



Properties (continued)

Ab and A′

Proposition
Ab ≡T A⊕∅′

Corollary

1. If A′ 6≤T A⊕∅′ then A′ 6≤T Ab

2. If A ≥T ∅′ then Ab ≡T A



Properties (continued)

Ab and A⊕∅′

Since the bounded jump is strictly increasing, if A ≥T ∅′ then
Ab 6≡bT A⊕∅′

Theorem
The class of A such that Ab ≡bT A⊕∅′ has measure zero.



Properties (continued)

Ab and A⊕∅′

Since the bounded jump is strictly increasing, if A ≥T ∅′ then
Ab 6≡bT A⊕∅′

Theorem
The class of A such that Ab ≡bT A⊕∅′ has measure zero.



Jump inversions

Strong jump inversion

As with the Turing jump, strong jump inversion holds for the
bounded jump on the bT degrees.

For every A ≥bT ∅b there is a B such that B⊕∅b ≡bT Bb ≡bT A

Shoenfield jump inversion

We noted earlier that Shoenfield inversion fails to hold for the
bounded Turing degrees with the Turing jump.



Jump inversions

Strong jump inversion

As with the Turing jump, strong jump inversion holds for the
bounded jump on the bT degrees.

For every A ≥bT ∅b there is a B such that B⊕∅b ≡bT Bb ≡bT A

Shoenfield jump inversion

We noted earlier that Shoenfield inversion fails to hold for the
bounded Turing degrees with the Turing jump.



First main result

Shoenfield jump inversion (continued)

However, Shoenfield inversion does hold for the bounded
Turing degrees with the bounded jump.

Theorem
Given B such that ∅b ≤bT B ≤bT ∅2b there is an A ≤bT ∅b such that
Ab ≡bT B



Second main result (preview)

Arithmetic and Ershov hierarchies

We noted earlier that the Turing jump is closely related to the
arithmetic hierarchy.

Similarly, we will show that the bounded jump is closely
related to the Ershov hierarchy.

We begin by reviewing the definition of the Ershov hierarchy.



Ershov hierarchy
Computably enumerable (c.e.)

Recall, a set A is c.e. if we can computably list the elements of A.

We can think of this as starting with the empty set, and adding
numbers computably (but not removing any).

2-c.e.
For a 2-c.e. set, we again start with the empty set and can
computably add numbers once.

Now, we can also remove numbers (but then we are done, we
can’t add them back again).



Ershov hierarchy
Computably enumerable (c.e.)

Recall, a set A is c.e. if we can computably list the elements of A.

We can think of this as starting with the empty set, and adding
numbers computably (but not removing any).

2-c.e.
For a 2-c.e. set, we again start with the empty set and can
computably add numbers once.

Now, we can also remove numbers (but then we are done, we
can’t add them back again).



Ershov hierarchy (continued)

m-c.e.

For 2-c.e. sets we are allowed to make at most two changes to a
number (one to add it, one to remove it).

For 3-c.e. sets we are allowed to make at most three changes
(add, remove, add again).

Similarly, for m-c.e. sets, we are allowed to make at most m
changes to a number being in the set.



Ershov hierarchy (continued)

ω-c.e.
A set is ω-c.e. if there is a computable function f such that in
deciding if n is in the set, we are allowed to make at most f (n)
many changes.

We can also use an equivalent definition:

The computable process assigns to each n a number cn of the
maximum number of remaining changes allowed.

Every time a change is made to n being in the set, a lower value
must be assigned to cn.



Ershov hierarchy (continued)

ω-c.e.
A set is ω-c.e. if there is a computable function f such that in
deciding if n is in the set, we are allowed to make at most f (n)
many changes.

We can also use an equivalent definition:

The computable process assigns to each n a number cn of the
maximum number of remaining changes allowed.

Every time a change is made to n being in the set, a lower value
must be assigned to cn.



Ershov hierarchy (continued)

We assign a lexicographic order to ordered pairs of numbers.

For example: (1, 5) < (1, 72) < (2, 18) < (3, 1) < (3, 15) etc.

ω2-c.e.
A set is ω2-c.e. if there is a computable process that assigns to
each n an ordered pair cn.

Every time a change is made to n being in the set, a lower
ordered pair must be assigned to cn.

ωm-c.e.
Similarly, a set is ωm-c.e. if the above holds with ordered
m-tuples replacing ordered pairs.



Ershov hierarchy (continued)

We assign a lexicographic order to ordered pairs of numbers.

For example: (1, 5) < (1, 72) < (2, 18) < (3, 1) < (3, 15) etc.

ω2-c.e.
A set is ω2-c.e. if there is a computable process that assigns to
each n an ordered pair cn.

Every time a change is made to n being in the set, a lower
ordered pair must be assigned to cn.

ωm-c.e.
Similarly, a set is ωm-c.e. if the above holds with ordered
m-tuples replacing ordered pairs.



Ershov hierarchy (continued)

We assign a lexicographic order to ordered pairs of numbers.

For example: (1, 5) < (1, 72) < (2, 18) < (3, 1) < (3, 15) etc.

ω2-c.e.
A set is ω2-c.e. if there is a computable process that assigns to
each n an ordered pair cn.

Every time a change is made to n being in the set, a lower
ordered pair must be assigned to cn.

ωm-c.e.
Similarly, a set is ωm-c.e. if the above holds with ordered
m-tuples replacing ordered pairs.



Ershov hierarchy (conclusion)

We formalize the definition for arbitrary ordinals.

Definition
A is α-c.e. for α ≥ ω if there is a partial computable
ψ : ω× α→ {0, 1} such that for all n there is a γ such that
ψ(n, γ)↓ and for the least such γ we have A(n) = ψ(n, γ).

Ershov hierarchy and ∅′

We note A ≤T ∅′ iff A is α-c.e. for some computable ordinal α.



Ershov hierarchy (conclusion)

We formalize the definition for arbitrary ordinals.

Definition
A is α-c.e. for α ≥ ω if there is a partial computable
ψ : ω× α→ {0, 1} such that for all n there is a γ such that
ψ(n, γ)↓ and for the least such γ we have A(n) = ψ(n, γ).

Ershov hierarchy and ∅′

We note A ≤T ∅′ iff A is α-c.e. for some computable ordinal α.



Ershov hierarchy and the bounded jump

Ershov hierarchy and the bounded jump

We wish to use the bounded jump to characterize the Ershov
hierarchy.

To do this, we generalize a well known result.



Second main result

Theorem (Folklore)
A ≤bT ∅′ ⇔ A is ω-c.e.⇔ A ≤tt ∅′

Theorem
For n ≥ 2, we have A ≤bT ∅nb ⇔ A is ωn-c.e.⇔ A ≤1 ∅nb



Second main result

Theorem (Folklore)
A ≤bT ∅′ ⇔ A is ω-c.e.⇔ A ≤tt ∅′

Theorem
For n ≥ 2, we have A ≤bT ∅nb ⇔ A is ωn-c.e.⇔ A ≤1 ∅nb



tt-cylinders

Definition
A is a tt-cylinder if for all B we have B ≤tt A⇒ B ≤1 A.

Corollary
For n ≥ 2, we have that ∅nb is a tt-cylinder.



Conclusion

Further progress

We can determine if other theorems about the Turing jump
hold for the bounded jump.

For example, Sacks showed that if B is c.e.(∅′) and B ≥T ∅′

then there is a c.e. set A such that A′ ≡T B.

Csima, Downey, and Ng proved Sacks jump inversion fails for
the bounded Turing degrees with the Turing jump.

Not yet known if Sacks jump inversion holds for the bounded
Turing degrees with the bounded jump.



Conclusion

Further progress

We can determine if other theorems about the Turing jump
hold for the bounded jump.

For example, Sacks showed that if B is c.e.(∅′) and B ≥T ∅′

then there is a c.e. set A such that A′ ≡T B.

Csima, Downey, and Ng proved Sacks jump inversion fails for
the bounded Turing degrees with the Turing jump.

Not yet known if Sacks jump inversion holds for the bounded
Turing degrees with the bounded jump.



Conclusion (continued)

Other open areas

Definition
A is bounded high if Ab ≥bT ∅2b. A is bounded low if
Ab ≤bT ∅b.

We can attempt to characterize which sets are bounded high or
bounded low. We can also look at other definitions using the
bounded jump.

Gerla developed jump operators for the truth-table and
bounded truth-table degrees. Not much work has been done
with these operators yet.



Conclusion (continued)

Other open areas

Definition
A is bounded high if Ab ≥bT ∅2b. A is bounded low if
Ab ≤bT ∅b.

We can attempt to characterize which sets are bounded high or
bounded low. We can also look at other definitions using the
bounded jump.

Gerla developed jump operators for the truth-table and
bounded truth-table degrees. Not much work has been done
with these operators yet.


