# A bounded jump for the bounded Turing degrees 

# Bernard Anderson and Barbara Csima 

University of Waterloo

October 4, 2010
www.math.uwaterloo.ca/~b7anders

## Computability Theory

Subsets of the natural numbers
In this talk, we will work with subsets of the natural numbers.

Infinite binary strings
We will often identify these sets with infinite binary strings
If $n \in A$ then we say $A(n)=1$. If $n \notin A$ then we say $A(n)=0$.

## Computability Theory

## Subsets of the natural numbers

In this talk, we will work with subsets of the natural numbers.
Infinite binary strings
We will often identify these sets with infinite binary strings
If $n \in A$ then we say $A(n)=1$. If $n \notin A$ then we say $A(n)=0$.

We use the notation $A \| n$ to denote the elements of $A$ less than or equal to $n$.

For example, if 3 and 5 are the elements of $A \| 5$, then the string for $A$ starts $00101 \ldots$

## Computability

Computable Sets
We say a set is computable if a sufficiently powerful computer can determine if any number is in the set, given arbitrarily large finite amounts of time and memory space.

Definition of computable
Although the above definition is vague, there are several precise definitions of a set being computable. These definitions have been shown to be equivalent.

## Enumerating Turing reductions

## Listing programs

We can view programs for our computer as finite strings.

We can use this to find a computable algorithm that lists all possible programs.

## Enumerating Turing reductions

## Listing programs

We can view programs for our computer as finite strings.

We can use this to find a computable algorithm that lists all possible programs.

Of course, most of these programs will make no sense.

We say a program is total if for every number we input it outputs a number and halts. Otherwise, we say it is partial.

## The halting set

## Notation

Let $\varphi_{n}$ denote the $n$th program.

If $\varphi_{n}$ halts when run with input $x$ we say it converges, denoted $\varphi_{n}(x) \downarrow$. Otherwise it diverges, denoted $\varphi_{n}(x) \uparrow$.

## The halting set (continued)

The halting set
We define the halting set (also called zero jump) to be the set of numbers $n$ such that the $n$th program halts when run with input $n$.

Formally, $\varnothing^{\prime}=\left\{x \mid \varphi_{x}(x) \downarrow\right\}$.

## The halting set (continued)

The halting set
We define the halting set (also called zero jump) to be the set of numbers $n$ such that the $n$th program halts when run with input $n$.

Formally, $\varnothing^{\prime}=\left\{x \mid \varphi_{x}(x) \downarrow\right\}$.

A diagonalization argument can be used to show that $\varnothing^{\prime}$ is not computable.

## Computable Enumerability

Computable Enumerability
We say a set $A$ is computably enumerable (c.e.) if we can computably (effectively) list the elements of the set.

## Computable Enumerability

## Computable Enumerability

We say a set $A$ is computably enumerable (c.e.) if we can computably (effectively) list the elements of the set.

We can see that $\varnothing^{\prime}$ is c.e. We enumerate $n$ into $\varnothing^{\prime}$ when we observe $\varphi_{n}(n) \downarrow$.

## Relative computability

Oracle machines
Let $A$ be a set, and suppose our computer can obtain information about $A$ as part of its computation process.

If this computer can calculate a set $B$ then we say $A$ can compute $B$.
We denote this $\Phi^{A}=B$ where $\Phi$ is our oracle machine.

## Relative computability (continued)

## Turing degrees

If $A$ can compute $B$ we also say $B$ is Turing below $A$ and denote it $B \leq_{T} A$.

## Relative computability (continued)

Turing degrees
If $A$ can compute $B$ we also say $B$ is Turing below $A$ and denote it $B \leq_{T} A$.

We note $\leq_{T}$ is an equivalence relation, and call the equivalence classes Turing degrees.

## The Turing jump

Notation
We let $\Phi_{n}^{A}$ denote the $n$th program using $A$ as an oracle.
Turing Jump
We define the Turing jump of $A$ by $A^{\prime}=\left\{x \mid \Phi_{x}^{A}(x) \downarrow\right\}$.

## The Turing jump

Notation
We let $\Phi_{n}^{A}$ denote the $n$th program using $A$ as an oracle.

Turing Jump
We define the Turing jump of $A$ by $A^{\prime}=\left\{x \mid \Phi_{x}^{A}(x) \downarrow\right\}$.

As before, a diagonalization argument shows $A$ cannot compute $A^{\prime}$. We note $A^{\prime}$ is c.e. in the oracle $A$, denoted c.e. $(A)$.

## The Turing jump

## Notation

We let $\Phi_{n}^{A}$ denote the $n$th program using $A$ as an oracle.

Turing Jump
We define the Turing jump of $A$ by $A^{\prime}=\left\{x \mid \Phi_{x}^{A}(x) \downarrow\right\}$.

As before, a diagonalization argument shows $A$ cannot compute $A^{\prime}$. We note $A^{\prime}$ is c.e. in the oracle $A$, denoted c.e. $(A)$.

The Turing jump is one of the most commonly studied items in Computability Theory. We examine its properties.

## One to one reductions

1-reductions
We say $A \leq_{1} B$ if there is a computable injection $f: \omega \rightarrow \omega$ such that $n \in A$ iff $f(n) \in B$.

## One to one reductions

1-reductions
We say $A \leq_{1} B$ if there is a computable injection $f: \omega \rightarrow \omega$ such that $n \in A$ iff $f(n) \in B$.

This is a very strong reduction. $A \leq_{1} B$ implies $A \leq_{T} B$.

We will see it is also stronger than other reducibilities we define later ( $b T$ and $t t$ ).

## Properties of the Turing jump

Basic properties of the Turing jump
Strictly increasing: $A<_{T} A^{\prime}$.

## Properties of the Turing jump

Basic properties of the Turing jump
Strictly increasing: $A<_{T} A^{\prime}$.

Order preserving: $A \leq_{T} B$ implies $A^{\prime} \leq_{1} B^{\prime}$.

## Properties of the Turing jump

Basic properties of the Turing jump
Strictly increasing: $A<_{T} A^{\prime}$.

Order preserving: $A \leq_{T} B$ implies $A^{\prime} \leq_{1} B^{\prime}$.

Equivalent to similar forms:
Let $K_{0}^{A}=\left\{\langle x, y\rangle \mid \Phi_{x}^{A}(y) \downarrow\right\}$. Then $A^{\prime} \equiv{ }_{1} K_{0}^{A}$.

## Properties of the Turing Jump (continued)

Inversion results

- (Friedberg) Let $X \geq_{T} \varnothing^{\prime}$. Then there is a $Y$ such that $X \equiv_{T} Y^{\prime} \equiv_{T} Y \oplus \varnothing^{\prime}$.


## Properties of the Turing Jump (continued)

## Inversion results

- (Friedberg) Let $X \geq_{T} \varnothing^{\prime}$. Then there is a $Y$ such that $X \equiv_{T} Y^{\prime} \equiv_{T} Y \oplus \varnothing^{\prime}$.
- (Shoenfield) Let $X \geq_{T} \varnothing^{\prime}$ be such that $X$ is c.e. $\left(\varnothing^{\prime}\right)$. Then there is a $Y \leq_{T} \varnothing^{\prime}$ such that $X \equiv_{T} Y^{\prime}$.


## Properties of the Turing Jump (continued)

## Inversion results

- (Friedberg) Let $X \geq_{T} \varnothing^{\prime}$. Then there is a $Y$ such that $X \equiv{ }_{T} Y^{\prime} \equiv{ }_{T} Y \oplus \varnothing^{\prime}$.
- (Shoenfield) Let $X \geq_{T} \varnothing^{\prime}$ be such that $X$ is c.e. $\left(\varnothing^{\prime}\right)$. Then there is a $Y \leq_{T} \varnothing^{\prime}$ such that $X \equiv_{T} Y^{\prime}$.
- (Sacks) The $Y$ in the above result can be made to be c.e.


## Arithmetic hierarchy

$\Sigma_{1}, \Pi_{1}$, and $\Delta_{1}$
We say a set $A$ is $\Sigma_{1}$ if there is a computable $R$ such that $m \in A$ iff $\exists x[\langle m, x\rangle \in R]$.

## Arithmetic hierarchy

$\Sigma_{1}, \Pi_{1}$, and $\Delta_{1}$
We say a set $A$ is $\Sigma_{1}$ if there is a computable $R$ such that $m \in A$ iff $\exists x[\langle m, x\rangle \in R]$.

We say $A$ is $\Pi_{1}$ if $m \in A$ iff $\forall x[\langle m, x\rangle \in R]$.

We say a set $A$ is $\Delta_{1}$ if it is both $\Sigma_{1}$ and $\Pi_{1}$.

## Arithmetic hierarchy

## $\Sigma_{1}, \Pi_{1}$, and $\Delta_{1}$

We say a set $A$ is $\Sigma_{1}$ if there is a computable $R$ such that $m \in A$ iff $\exists x[\langle m, x\rangle \in R]$.

We say $A$ is $\Pi_{1}$ if $m \in A$ iff $\forall x[\langle m, x\rangle \in R]$.

We say a set $A$ is $\Delta_{1}$ if it is both $\Sigma_{1}$ and $\Pi_{1}$.

It can be shown that $A$ is $\Sigma_{1}$ iff $A$ is c.e. and that $A$ is $\Delta_{1}$ iff $A$ is computable.

## Arithmetic hierarchy (continued)

$\Sigma_{n}, \Pi_{n}$, and $\Delta_{n}$
Suppose $m \in A$ iff $Q_{1} x_{1} \ldots Q_{n} x_{n}\left[\left\langle m, x_{1}, \ldots, x_{n}\right\rangle \in R\right]$ where $Q_{1} \ldots Q_{n}$ denotes $n$ alternating quantifiers.

If $Q_{1}$ is $\exists$ we say $A$ is $\Sigma_{n}$. If $Q_{n}$ is $\forall$ then $A$ is $\Pi_{n}$.

For example, $A$ is $\Sigma_{3}$ means $m \in A$ iff $\exists x_{1} \forall x_{2} \exists x_{3}\left[\left\langle m, x_{1}, x_{2}, x_{3}\right\rangle \in R\right]$.
$A$ is $\Delta_{n}$ if it is both $\Sigma_{n}$ and $\Pi_{n}$.

## Arithmetical hierarchy and the Turing jump

Notation
Let $\bar{A}$ denote the set such that $n \in \bar{A}$ iff $n \notin A$.
Let $\varnothing^{(n)}$ denote the $n$th Turing jump (i.e. $\varnothing^{(2)}$ is the jump of $\varnothing^{\prime}$ ).

## Arithmetical hierarchy and the Turing jump

## Notation

Let $\bar{A}$ denote the set such that $n \in \bar{A}$ iff $n \notin A$.
Let $\varnothing^{(n)}$ denote the $n$th Turing jump (i.e. $\varnothing^{(2)}$ is the jump of $\varnothing^{\prime}$ ).

Post's Theorem

- $A$ is $\Delta_{n}$ iff $A \leq_{T} \varnothing^{(n-1)}$.
$-A$ is $\Sigma_{n}$ iff $A$ is c.e. $\left(\varnothing^{(n-1)}\right)$.
- $A$ is $\Pi_{n}$ iff $\bar{A}$ is c.e. $\left(\varnothing^{(n-1)}\right)$.


## Other reducibilities

## Turing

Recall $A$ is Turing below $B$ if there is an oracle machine which computes $A$ from $B$.
$A \leq_{T} B$ if there is a $\Phi$ such that $\Phi^{A}(n)=B(n)$ for all $n$.

## Other reducibilities

## Turing

Recall $A$ is Turing below $B$ if there is an oracle machine which computes $A$ from $B$.
$A \leq_{T} B$ if there is a $\Phi$ such that $\Phi^{A}(n)=B(n)$ for all $n$.
Bounded Turing
If we set a computable bound on the amount of the oracle that can be used, we have a bounded Turing reduction.
$A \leq_{b T} B$ if there is a $\Phi$ and a computable function $f$ such that $\Phi^{A \| f(n)}(n)=B(n)$ for all $n$.

## Other reducibilities (continued)

## Truth-table

If we add the requirement that the oracle machine is total, we have truth-table reducibility
$A \leq_{t t} B$ if there is a $\Phi$ such that $\Phi^{X}(n) \downarrow$ for all $X$ and $n$ and $\Phi^{A}(n)=B$ for all $n$.

## Other reducibilities (continued)

## Truth-table

If we add the requirement that the oracle machine is total, we have truth-table reducibility
$A \leq_{t t} B$ if there is a $\Phi$ such that $\Phi^{X}(n) \downarrow$ for all $X$ and $n$ and $\Phi^{A}(n)=B$ for all $n$.

Comparing reducibilities
$A \leq_{1} B \Rightarrow A \leq_{t t} B \Rightarrow A \leq_{b T} B \Rightarrow A \leq_{T} B$.

Bounded Turing reducibility is sometimes called weak truth-table reducibility.

## The Turing jump on the bounded Turing degrees

Similarities of the Turing jump on the $T$ and $b T$ degrees
We consider the behavior of the Turing jump on the bounded Turing degrees.

Sometimes it acts like the Turing jump on the Turing degrees.

One example where this was discovered to be the case was strong jump inversion.

## The Turing jump on the bounded Turing degrees (continued)

Similarities of the $T$ and $b T$ degrees (continued)
Generic reals were used to prove strong jump inversion for the Turing degrees.
(Friedberg) Let $X \geq_{T} \varnothing^{\prime}$. Then there is a $Y$ such that $X \equiv_{T} Y^{\prime} \equiv_{T} Y \oplus \varnothing^{\prime}$.

## The Turing jump on the bounded Turing degrees (continued)

Similarities of the $T$ and $b T$ degrees (continued)
Generic reals were used to prove strong jump inversion for the Turing degrees.
(Friedberg) Let $X \geq_{T} \varnothing^{\prime}$. Then there is a $Y$ such that $X \equiv_{T} Y^{\prime} \equiv_{T} Y \oplus \varnothing^{\prime}$.

In 1984 they were used to prove ordinary jump inversion for the truth-table degrees:
(Mohrherr) Let $X \geq_{t t} \varnothing^{\prime}$. Then there is a $Y$ such that $X \equiv_{t t} Y^{\prime}$.

## The Turing jump on the bounded Turing degrees (continued)

## Similarities of the $T$ and $b T$ degrees (continued)

Generic reals cannot be used for strong jump inversion in the $t t$ or $b T$ case.

## The Turing jump on the bounded Turing degrees (continued)

## Similarities of the $T$ and $b T$ degrees (continued)

Generic reals cannot be used for strong jump inversion in the $t t$ or $b T$ case.

However, newer methods can be used to show strong jump inversion does also hold for the truth-table and bounded Turing degrees.
(Anderson) Let $X \geq_{b T} \varnothing^{\prime}$. Then there is a $Y$ such that $X \equiv_{b T} Y^{\prime} \equiv_{b T} Y \oplus \varnothing^{\prime}$.

## The Turing jump on the bounded Turing degrees (continued)

Differences between the $T$ and $b T$ degrees
In other cases the Turing jump acts differently of the bounded Turing degrees than it does on the Turing degrees.

## The Turing jump on the bounded Turing degrees (continued)

Differences between the $T$ and $b T$ degrees
In other cases the Turing jump acts differently of the bounded Turing degrees than it does on the Turing degrees.

For example, recall:
(Shoenfield) Let $X \geq_{T} \varnothing^{\prime}$ be such that $X$ is c.e. $\left(\varnothing^{\prime}\right)$. Then there is a $Y \leq_{T} \varnothing^{\prime}$ such that $X \equiv_{T} Y^{\prime}$.

## The Turing jump on the bounded Turing degrees (continued)

Differences between the $T$ and $b T$ degrees
In other cases the Turing jump acts differently of the bounded Turing degrees than it does on the Turing degrees.

For example, recall:
(Shoenfield) Let $X \geq_{T} \varnothing^{\prime}$ be such that $X$ is c.e. $\left(\varnothing^{\prime}\right)$. Then there is a $Y \leq_{T} \varnothing^{\prime}$ such that $X \equiv_{T} Y^{\prime}$.

The analogue does not hold:
(Csima, Downey, and Ng ) There is a $C>_{t t} \varnothing^{\prime}$ such that $C$ is c.e. $\left(\varnothing^{\prime}\right)$ but for all $D \leq_{T} \varnothing^{\prime}$ we have $D^{\prime} \not \equiv_{b T} C$.

## Motivation

Finding a bounded jump
Can we find a "bounded" jump operator which corresponds to the definition of the bounded Turing degrees?

## Motivation

## Finding a bounded jump

Can we find a "bounded" jump operator which corresponds to the definition of the bounded Turing degrees?

We would want such an operator to interact with the bounded Turing degrees in a manner analogous to the interaction of the Turing jump with the Turing degrees.

## Motivation (continued)

Desired properties

- Limited use of oracle
- Equivalent to similar operators
- Strictly increasing
- Order preserving
- Distinct from known operators


## Bounded jump

Defining the bounded jump
We will define the bounded jump to be similar to the Turing jump.

However, we will restrict the use of the oracle for $n$ to the highest possible value of $\varphi_{i}(n)$ for some $i \leq n$.

## Bounded jump (continued)

Definition
$A^{b}=\left\{x \mid \exists i<x\left[\varphi_{i}(x) \downarrow \wedge \Phi_{x}^{A \| \varphi_{i}(x)}(x) \downarrow\right]\right\}$.

We let $A^{n b}$ denote the $n$-th bounded jump.

## Similar operators

A more general form
The bounded jump is equivalent to a more general form.
Definition

$$
A^{b_{0}}=\left\{\langle e, i, j\rangle \mid \varphi_{i}(j) \downarrow \wedge \Phi_{e}^{A\left\lceil\varphi_{i}(j)\right.}(j) \downarrow\right\} .
$$

## Similar operators

A more general form
The bounded jump is equivalent to a more general form.
Definition

$$
A^{b_{0}}=\left\{\langle e, i, j\rangle \mid \varphi_{i}(j) \downarrow \wedge \Phi_{e}^{A \upharpoonright \varphi_{i}(j)}(j) \downarrow\right\} .
$$

Theorem

1. $A^{b_{0}} \leq_{1} A^{b}$
2. $A^{b} \leq_{t t} A^{b_{0}}$
3. There exists $A$ such that $A^{b} \not \mathbb{L}_{1} A^{b_{0}}$

## Similar operators (continued)

A simple form
A simplified form does not work as a jump operator.

Definition
$A^{i}=\left\{x \mid \Phi_{x}^{A \| x}(x) \downarrow\right\}$

Remark
Let $A \geq_{b T} \varnothing^{\prime}$. Then $A^{i} \leq_{b T} A$.

## Properties

Basic properties

1. $\varnothing^{b} \equiv_{1} \varnothing^{\prime}$
2. $A \leq_{1} A^{b}$
3. $A^{b} \leq_{1} A^{\prime}$
(since $A^{b}$ is c.e.(A))

## Properties (continued)

Strictly increasing

Theorem
$A^{b} \pm_{b T} A$

## Properties (continued)

Strictly increasing
Theorem
$A^{b} \mathbb{Z}_{b T} A$
Order preserving
Theorem

$$
A \leq_{b T} B \Rightarrow A^{b_{0}} \leq_{1} B^{b_{0}}
$$

## Properties (continued)

## Strictly increasing

Theorem
$A^{b} \not \leq_{b T} A$
Order preserving
Theorem $A \leq_{b T} B \Rightarrow A^{b_{0}} \leq_{1} B^{b_{0}}$

Corollary

1. $A \leq_{b T} B \Rightarrow A^{b} \leq_{t t} B^{b}$
2. $\varnothing^{\prime} \leq_{t t} A^{b}$

## Properties (continued)

$A^{b}$ and $A^{\prime}$
Proposition
$A^{b} \equiv_{T} A \oplus \varnothing^{\prime}$

## Properties (continued)

$A^{b}$ and $A^{\prime}$
Proposition
$A^{b} \equiv_{T} A \oplus \varnothing^{\prime}$

Corollary

1. If $A^{\prime} \not \mathbb{Z}_{T} A \oplus \varnothing^{\prime}$ then $A^{\prime} \not \mathbb{Z}_{T} A^{b}$

## Properties (continued)

$A^{b}$ and $A^{\prime}$
Proposition
$A^{b} \equiv_{T} A \oplus \varnothing^{\prime}$

Corollary

1. If $A^{\prime} \mathbb{Z}_{T} A \oplus \varnothing^{\prime}$ then $A^{\prime} \not \mathbb{Z}_{T} A^{b}$
2. If $A \geq_{T} \varnothing^{\prime}$ then $A^{b} \equiv_{T} A$

## Properties (continued)

## $A^{b}$ and $A \oplus \varnothing^{\prime}$

Since the bounded jump is strictly increasing, if $A \geq_{T} \varnothing^{\prime}$ then $A^{b} \not \equiv_{b T} A \oplus \varnothing^{\prime}$

## Properties (continued)

$A^{b}$ and $A \oplus \varnothing^{\prime}$
Since the bounded jump is strictly increasing, if $A \geq_{T} \varnothing^{\prime}$ then $A^{b}{ }^{\prime}{ }_{b T} A \oplus \emptyset^{\prime}$

Theorem
The class of $A$ such that $A^{b} \equiv_{b T} A \oplus \varnothing^{\prime}$ has measure zero.

## Jump inversions

## Strong jump inversion

As with the Turing jump, strong jump inversion holds for the bounded jump on the $b T$ degrees.

For every $A \geq_{b T} \varnothing^{b}$ there is a $B$ such that $B \oplus \varnothing^{b} \equiv_{b T} B^{b} \equiv_{b T} A$

## Jump inversions

## Strong jump inversion

As with the Turing jump, strong jump inversion holds for the bounded jump on the $b T$ degrees.

For every $A \geq_{b T} \varnothing^{b}$ there is a $B$ such that $B \oplus \varnothing^{b} \equiv_{b T} B^{b} \equiv_{b T} A$

Shoenfield jump inversion
We noted earlier that Shoenfield inversion fails to hold for the bounded Turing degrees with the Turing jump.

## First main result

Shoenfield jump inversion (continued)
However, Shoenfield inversion does hold for the bounded Turing degrees with the bounded jump.

Theorem
Given $B$ such that $\varnothing^{b} \leq_{b T} B \leq_{b T} \varnothing^{2 b}$ there is an $A \leq_{b T} \varnothing^{b}$ such that $A^{b} \equiv_{b T} B$

## Second main result (preview)

## Arithmetic and Ershov hierarchies

We noted earlier that the Turing jump is closely related to the arithmetic hierarchy.

Similarly, we will show that the bounded jump is closely related to the Ershov hierarchy.

We begin by reviewing the definition of the Ershov hierarchy.

## Ershov hierarchy

## Computably enumerable (c.e.)

Recall, a set $A$ is c.e. if we can computably list the elements of $A$.

We can think of this as starting with the empty set, and adding numbers computably (but not removing any).

## Ershov hierarchy

## Computably enumerable (c.e.)

Recall, a set $A$ is c.e. if we can computably list the elements of $A$.

We can think of this as starting with the empty set, and adding numbers computably (but not removing any).

2-с.е.
For a 2-c.e. set, we again start with the empty set and can computably add numbers once.

Now, we can also remove numbers (but then we are done, we can't add them back again).

## Ershov hierarchy (continued)

m-c.e.

For 2-c.e. sets we are allowed to make at most two changes to a number (one to add it, one to remove it).

For 3-c.e. sets we are allowed to make at most three changes (add, remove, add again).

Similarly, for $m$-c.e. sets, we are allowed to make at most $m$ changes to a number being in the set.

## Ershov hierarchy (continued)

$\omega$-c.e.
A set is $\omega$-c.e. if there is a computable function $f$ such that in deciding if $n$ is in the set, we are allowed to make at most $f(n)$ many changes.

## Ershov hierarchy (continued)

$\omega$-c.e.
A set is $\omega$-c.e. if there is a computable function $f$ such that in deciding if $n$ is in the set, we are allowed to make at most $f(n)$ many changes.

We can also use an equivalent definition:
The computable process assigns to each $n$ a number $c_{n}$ of the maximum number of remaining changes allowed.

Every time a change is made to $n$ being in the set, a lower value must be assigned to $c_{n}$.

## Ershov hierarchy (continued)

We assign a lexicographic order to ordered pairs of numbers.
For example: $(1,5)<(1,72)<(2,18)<(3,1)<(3,15)$ etc.

## Ershov hierarchy (continued)

We assign a lexicographic order to ordered pairs of numbers.
For example: $(1,5)<(1,72)<(2,18)<(3,1)<(3,15)$ etc.
$\omega^{2}$-c.e.
A set is $\omega^{2}$-c.e. if there is a computable process that assigns to each $n$ an ordered pair $c_{n}$.

Every time a change is made to $n$ being in the set, a lower ordered pair must be assigned to $c_{n}$.

## Ershov hierarchy (continued)

We assign a lexicographic order to ordered pairs of numbers.
For example: $(1,5)<(1,72)<(2,18)<(3,1)<(3,15)$ etc.
$\omega^{2}$-с.е.
A set is $\omega^{2}$-c.e. if there is a computable process that assigns to each $n$ an ordered pair $c_{n}$.

Every time a change is made to $n$ being in the set, a lower ordered pair must be assigned to $c_{n}$.
$\omega^{m}$-c.e.
Similarly, a set is $\omega^{m}$-c.e. if the above holds with ordered $m$-tuples replacing ordered pairs.

## Ershov hierarchy (conclusion)

We formalize the definition for arbitrary ordinals.
Definition
$A$ is $\alpha$-c.e. for $\alpha \geq \omega$ if there is a partial computable $\psi: \omega \times \alpha \rightarrow\{0,1\}$ such that for all $n$ there is a $\gamma$ such that $\psi(n, \gamma) \downarrow$ and for the least such $\gamma$ we have $A(n)=\psi(n, \gamma)$.

## Ershov hierarchy (conclusion)

We formalize the definition for arbitrary ordinals.
Definition
$A$ is $\alpha$-c.e. for $\alpha \geq \omega$ if there is a partial computable $\psi: \omega \times \alpha \rightarrow\{0,1\}$ such that for all $n$ there is a $\gamma$ such that $\psi(n, \gamma) \downarrow$ and for the least such $\gamma$ we have $A(n)=\psi(n, \gamma)$.

Ershov hierarchy and $\varnothing^{\prime}$
We note $A \leq_{T} \varnothing^{\prime}$ iff $A$ is $\alpha$-c.e. for some computable ordinal $\alpha$.

## Ershov hierarchy and the bounded jump

Ershov hierarchy and the bounded jump
We wish to use the bounded jump to characterize the Ershov hierarchy.

To do this, we generalize a well known result.

## Second main result

Theorem (Folklore)
$A \leq_{b T} \varnothing^{\prime} \Leftrightarrow A$ is $\omega$-c.e. $\Leftrightarrow A \leq_{t t} \varnothing^{\prime}$

## Second main result

Theorem (Folklore)
$A \leq_{b T} \varnothing^{\prime} \Leftrightarrow A$ is $\omega$-c.e. $\Leftrightarrow A \leq_{t t} \varnothing^{\prime}$

Theorem
For $n \geq 2$, we have $A \leq_{b T} \varnothing^{n b} \Leftrightarrow A$ is $\omega^{n}$-c.e. $\Leftrightarrow A \leq_{1} \varnothing^{n b}$

## tt-cylinders

Definition
$A$ is a $t t$-cylinder if for all $B$ we have $B \leq_{t t} A \Rightarrow B \leq_{1} A$.

Corollary
For $n \geq 2$, we have that $\varnothing^{n b}$ is a $t t$-cylinder.

## Conclusion

## Further progress

We can determine if other theorems about the Turing jump hold for the bounded jump.

## Conclusion

## Further progress

We can determine if other theorems about the Turing jump hold for the bounded jump.

For example, Sacks showed that if $B$ is c.e.( $\left(\varnothing^{\prime}\right)$ and $B \geq_{T} \varnothing^{\prime}$ then there is a c.e. set $A$ such that $A^{\prime} \equiv_{T} B$.

Csima, Downey, and Ng proved Sacks jump inversion fails for the bounded Turing degrees with the Turing jump.

Not yet known if Sacks jump inversion holds for the bounded Turing degrees with the bounded jump.

## Conclusion (continued)

Other open areas
Definition
$A$ is bounded high if $A^{b} \geq_{b T} \varnothing^{2 b}$. $A$ is bounded low if
$A^{b} \leq_{b T} \varnothing^{b}$.

We can attempt to characterize which sets are bounded high or bounded low. We can also look at other definitions using the bounded jump.

## Conclusion (continued)

## Other open areas

Definition
$A$ is bounded high if $A^{b} \geq_{b T} \varnothing^{2 b}$. $A$ is bounded low if
$A^{b} \leq_{b T} \varnothing^{b}$.

We can attempt to characterize which sets are bounded high or bounded low. We can also look at other definitions using the bounded jump.

Gerla developed jump operators for the truth-table and bounded truth-table degrees. Not much work has been done with these operators yet.

