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Abstract

Relative properties of reals

by

Bernard August Anderson

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Theodore A. Slaman, Chair

This paper examines several properties of reals in some relative context. We

consider in detail reals which are relatively recursively enumerable, reals which are n-generic

relative to some perfect tree, and reals which are relatively hyperimmune-free. We seek to

classify which reals hold these properties and study the implications of certain reals being

included or excluded.

Many of the findings are unexpected. All but countably many reals are n-generic

relative to some perfect tree and relatively hyperimmune-free. However much of the hier-

archy of iterated hyperjumps do not hold these properties. Indeed, for genericity we need

ZFC− and infinitely many iterates of the power set of ω to complete the proof. The set

of relatively recursively enumerable reals is, in some sense, as large as possible. However

every nonempty Π0
1 class and the set of relatively REA reals each contain a real which is

not relatively recursively enumerable.
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We say that a real X is relatively r.e. if there exists a real Y such that X is r.e.

(Y ) and X 6≤T Y . We say X is relatively REA if there exists such a Y ≤T X. We define

A ≤e1 B if there exists a Σ1 set C such that n ∈ A if and only if there is a finite E ⊆ B

with (n,E) ∈ C. We show that a real X is relatively r.e. if and only if X 6≤e1 X.

We prove that every nonempty Π0
1 class contains a real which is not relatively r.e.

We also construct a real which is relatively r.e. but not relatively REA. We show that for

all reals X and Z such that X 6≤e1 X, X <T Z, and Z is REA (X) there is a real Y such

that Y ≤T Z, Y 6≤T X, and X is r.e. (Y ). We also show that for every real X such that

X 6≤e1 X there is a Y such that X is r.e. (Y ), X 6≤T Y , and Y is not arithmetic in X.

A real X is relatively simple and above if there exists a real Y such that X is r.e.

(Y ) and there is no infinite Z ⊆ X such that Z is r.e. (Y ). We prove that every 1-generic

real is relatively simple and above.

We say that a real X is n-generic relative to a perfect tree T if X is a path through

T and for all Σ0
n(T ) sets S, there exists a number k such that either X|k ∈ S or for all

σ ∈ T extending X|k we have σ /∈ S. A real X is n-generic relative to some perfect tree if

there exists such a T .

We first show that for every number n all but countably many reals are n-generic

relative to some perfect tree. Second, we show that proving this statement requires ZFC− +

“∃ infinitely many iterates of the power set of ω”. Third, we prove that every finite iterate

of the hyperjump, O(n), is not 2-generic relative to any perfect tree and for every ordinal

α below the least λ such that supβ<λ(βth admissible) = λ, the iterated hyperjump O(α) is

not 5-generic relative to any perfect tree.



3

We show that no ranked real is 1-generic relative to some perfect tree. We prove

that a 2-generic real cannot compute a nonrecursive ranked real. We note that no real of

n-REA degree for n ∈ ω is 1-generic relative to some perfect tree but construct a 1-generic

real which is ω-r.e.

We say that a real X is relatively hyperimmune-free if there exists a real Y such

that X 6≤T Y and for every function f ≤T X ⊕ Y there is a function g ≤T Y which

dominates f . We prove that all but countably many reals are relatively hyperimmune-free.

We demonstrate that reals of α-REA degree are not relatively hyperimmune-free for all

α < ωCK
1 . Finally, we show that for every ordinal α below the least λ such that supβ<λ(βth

admissible) = λ, the iterated hyperjump O(α) is not relatively hyperimmune-free.

Professor Theodore A. Slaman
Dissertation Committee Chair
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Chapter 1

Introduction

In this thesis we will study the behavior of reals, which we view as elements of

the Cantor space (2ω), infinite binary strings. While we will use the Turing degrees of the

reals, we are mainly concerned with the reals themselves. We examine three properties of

reals: recursive enumerability, genericity, and nonhyperimmunity. In each case, there are

computational bounds on which reals can hold these properties. For example, reals strictly

above 0′ hold none of them. However, characteristics of these properties can still appear

when working with reals outside these bounds.

We wish to answer the question: Which reals hold these properties in some appro-

priate relative context, and which inherently lack them? In particular, we want to determine

which reals are relatively recursively enumerable, which reals are n-generic relative to some

perfect tree, and which reals are relatively hyperimmune-free. In a sense this is an inversion

problem, since we try to find for which reals X is there another real or a perfect tree which

witnesses X holding the relative property. We find that the sets of reals holding these
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relative properties are surprisingly large, yet there are many interesting reals which are not

contained in them. Furthermore, we observe that our analysis of which reals are n-generic

relative to some perfect tree requires an unexpectedly large fragment of ZFC.

We consider separately each of these properties in more detail below. We note

that much of the material in this thesis is expected to appear in similar or identical form

in two currently unpublished articles by the author [1, 2].

Relatively recursively enumerable reals

The study of recursively enumerable (r.e.) reals is a fundamental part of Recursion Theory.

A real is r.e. if it is the range of a recursive function; there is an effective procedure to list

its elements. We want to determine when a real is r.e. relative to another real without being

recursive in it.

Definition 1. A real X is relatively r.e. if there exists a real Y such that X is r.e. (Y ) and

X 6≤T Y .

Definition 2. A real X is relatively REA if there exists a real Y ≤T X such that X is r.e.

(Y ) and X 6≤T Y .

Jockusch first made progress towards classifying the relatively r.e. reals by showing

that all 1-generic reals are relatively REA [6]. Later, Kurtz proved that the set of relatively

REA reals has measure one [12]. Kautz improved this by demonstrating that all 2-random

reals are relatively REA [10]. While the set of relatively r.e. reals seems very large, there

is a natural limit to its size. Given any real X, we can find a real Y in the same Turing

degree such that Y is not relatively r.e. We simply let Y be the set of initial segments of
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X. More generally, a real X is not relatively r.e. any time there is a Σ1 machine taking

enumerations of X to enumerations of X.

We will show that this is the only case in which X is not relatively r.e. We begin

with some definitions of reductions where one enumeration is computed from another.

Definition 3. A ≤en B if there is a Σn set C such that n ∈ A if and only if there is a finite

E ⊆ B with (n,E) ∈ C.

Definition 4. A ≤e B if there is a Σ1 machine which, given an enumeration of B in any

order, outputs an enumeration of A.

It is easy to see that A ≤e1 B iff A ≤e B and we will use the terms interchangeably

from now on. We will prove that a real X is relatively r.e. if and only if X 6≤e X. This

demonstrates that the set of relatively r.e. reals is, in some sense, as large as possible.

We will show that not every relatively r.e. real is relatively REA by a direct

construction. While we cannot guarantee that an X such that X 6≤e X is relatively REA

in the general case, we can always find a witness Y that is close to being recursive in X.

Given any Z >T X where Z is REA (X), we can find Y ≤T Z.

Jockusch and Soare showed that every nonempty Π0
1 class contains a real which

has hyperimmune-free degree and hence is not relatively REA [9]. We sharpen this by

showing every nonempty Π0
1 class contains a real which is not relatively r.e. We also offer

an improvement to Jockusch’s result that all 1-generic reals are relatively REA [6].

Definition 5. A real X is relatively simple and above if there exists a real Y ≤T X such

that X is r.e. (Y ) and there is no infinite Z ⊆ X such that Z is r.e. (Y ).

We will prove that all 1-generic reals are relatively simple and above.



4

Reals n-generic relative to some perfect tree

A real is n-generic if for every Σ0
n set there is an initial segment of the real which either meets

the set or for which no extension of the segment can meet the set. These reals have many

interesting characteristics and have been studied extensively (see Jockusch and Posner [7]

and Kumabe [11] among others). While the set of n-generics is comeager, it is in some ways

limited. In particular, it is completely excluded from the cone above 0′ since no 1-generic

can compute a nonrecursive r.e. set.

We wish to determine how this set might be expanded from reals which are n-

generic to those that can be made to seem n-generic in some appropriate context. An

attractive framework for this question is to consider reals which are n-generic when viewed

as paths through a given perfect tree, rather than all of 2ω.

Definition 6. A real X is n-generic relative to a perfect tree T if X is a path through T

and for all Σ0
n(T ) sets S, there is a k such that either X|k ∈ S or σ /∈ S for every σ ∈ T

extending X|k.

Definition 7. A real X is n-generic relative to some perfect tree if there exists a perfect

tree T such that X is n-generic relative to T .

We show that the set of reals not n-generic relative to any perfect tree is countable.

From this we can infer that many reals with properties that are not normally associated

with genericity still seem generic in the context of some perfect tree. For example, there

are reals of minimal degree and reals with high information content, such as the theory of

second order arithmetic, that are generic relative to some perfect tree.
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The proof that the set of reals not n-generic relative to any perfect tree is countable

uses ZFC− and n iterates of the power set of ω. We show that for sufficiently large n, this

requirement is sharp and cannot be significantly improved. From this we see that for

reasonably high values of n, the set of reals not n-generic relative to any perfect tree is

unusually large for a countable set of this type. It provides a natural example of a set which

needs this level of ZFC to be understood.

The set of reals not n-generic relative to some perfect tree behaves similarly for low

values of n. By looking at the iterates of the hyperjump, we demonstrate that the set still

contains reals of unexpectedly high complexity. Even for n = 2, relatively large fragments

of arithmetic fail to prove the set is countable. We also begin to characterize the sets that

are 1-generic relative to some perfect tree.

In a similar vein, Reimann and Slaman [17] have recently studied the set of reals

which appear random in some context, in this case relative to some continuous measure.

Our results for genericity are analogous to what they have discovered for randomness in

surprisingly many, but not all, instances.

Relatively hyperimmune-free reals

We also find conclusions similar to those of Reimann and Slaman [17] in our study of

relatively hyperimmune-free reals. A real is hyperimmune-free if every function it computes

can be dominated by a recursive function. These reals have been well studied (see Martin

and Miller [15] and Soare [21] among others). We note that for any real X if there exists

a real Y such that Y <T X ≤T Y ′ then X is not hyperimmune-free. This implies that no
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real which computes 0′ or can be computed by 0′ is hyperimmune-free. We seek to study

which reals appear hyperimmune-free relative to another real.

Definition 8. A real X is relatively hyperimmune-free if there exists a real Y with X 6≤T Y

such that for every function f ≤T X ⊕ Y there is a function g ≤T Y which dominates f .

There are several constructions of a nontrivial hyperimmune-free real which can be

relativized to show that relatively hyperimmune-free reals are cofinal in the Turing degrees

[9] [15]. For example, if X is a Spector minimal cover of Y then Y witnesses that X is

relatively hyperimmune-free. Hence a Spector minimal cover of 0′ is an example of a real

which is relatively hyperimmune-free but not hyperimmune-free.

We show that the set of reals which are not relatively hyperimmune-free is count-

able. However, as with genericity, iterated hyperjumps provide examples of reals of high

complexity in this set. At lower levels, we note that reals of α-REA degree are not relatively

hyperimmune-free for all α < ωCK
1 .
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Chapter 2

Relatively recursively enumerable

reals

2.1 Main Theorem

Let X be a real such that X 6≤e X. To show that X is relatively r.e., we will use a witness Y

which is simply a list of the elements of X (viewed as a set). We use a monadic conversion

function m : ωω → 2ω, defined by m(A) = 1A(0) 0̂̂ 1A(1) 0̂̂ 1A(2) 0̂ . . .. By definition, X is

then r.e. (Y ), but we must find an order for this list such that Y 6≥T X. We will do this

using the partial order of all finite strings of elements of X. We choose Y to be the monadic

form of a generic for this partial order.

Theorem 2.1.1. X is relatively r.e. if and only if X 6≤e X.

Proof. (=⇒) Let Y 6≥T X be such that X is r.e. (Y ). Suppose X ≤e X. Then given Y

we can enumerate X and use this to enumerate X. Hence X is r.e. (Y ), so X ≤T Y for a
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contradiction. Thus X 6≤e X.

(⇐=) Let P be the partial order P = {σ ∈ ω<ω | ∀n < length(σ) [σ(n) ∈ X]},

ordered by reverse inclusion. Let G be a 1-generic (X) real in this partial order and let

Y = m(G). Then X is r.e. (Y ), since n ∈ X if and only if 0̂ 1n 0̂ ⊆ Y (adding n to Y is

dense). It remains to show X is not r.e. (Y ).

Suppose X = W Y
k for some k. We will use genericity to show any enumeration of

X extending some condition computes an enumeration of X. This will imply X ≤e X for

a contradiction. Let S = {σ ∈ P | ∃n ∈ X [n ∈ W
m(σ)
k ]}. Then G 6∈ S and G is 1-generic

(X), so for some q ∈ G we have ∀r ≤P q [r /∈ S]. Let Q = {p ∈ P | p ≤P q}.

Claim. n ∈ X if and only if ∃p ∈ Q [n ∈Wm(p)
k ].

Proof. (⇐=) p /∈ S so for all l ∈ X we have l /∈Wm(p)
k . Hence n ∈ X.

(=⇒) n ∈ X so n ∈W Y
k . Then for some r ∈ G we have n ∈Wm(r)

k and r ∈ Q.

Given an enumeration of X, we can generate an enumeration of Q by adding

elements of X to q in all possible orders. We can then find an enumeration of X using the

claim. Hence X ≤e X for the desired contradiction. Therefore X is not r.e. (Y ) and X is

relatively r.e.

The proof can also be done in an arithmetic context, using an ordinary 1-generic

(X) real G, and letting Y = {〈n,m〉 | n ∈ X ∧ 〈n,m〉 ∈ G}. In this context we see that

we can compute a witness Y from X and any 1-generic (X) real. Hence, given any real Z

which is properly REA (X), we can find a witness which is recursive in Z.
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Remark 2.1.2. Let Z be REA (X), Z 6≤T X, and X 6≤e X. Then there exists Y ≤T Z

such that X is r.e. (Y ) and X 6≤T Y .

We state two corollaries.

Corollary 2.1.3. Let n ∈ ω. X 6≤en X if and only if there exists Y such that X is Σn(Y )

and X is not ∆n(Y ).

Proof. (⇐=) X is Σn(Y ) and X is not ∆n(Y ) for some Y . If X ≤en X then X is Σn(Y )

for a contradiction. Hence X 6≤en X.

(=⇒) X 6≤en X. This implies X 6≤en X ⊕ 0(n) since the existence of a subset of

0(n) with a Σn property is a Σn question. By the argument used in the proof of Theorem

2.1.1 we can conclude there is a Z such that X ⊕ 0(n) is r.e. (Z) and X is not r.e. (Z). We

note that 0(n) is r.e. (Z) implies 0(n) ≤1 Z
′ so 0(n−1) ≤T Z. By the Friedberg Inversion

Theorem, let Y be such that Y (n−1) ≡T Z. Then X is r.e. (Y (n−1)) so X is Σn(Y ). Suppose

X is Σn(Y ). Then X is r.e. (Y (n−1)), so X is r.e. (Z) for a contradiction. Hence X is not

∆n(Y ).

Corollary 2.1.4. Let X 6≤e X. Then there exists Y such that X is r.e. (Y ) and X⊕Y ≥T

Y ′.

Proof. We use Theorem 2.1.1 to find a real Z 6≥T X such that X is r.e. (Z). We then apply

the proof of the Posner-Robinson Theorem above Z to get a real Y ≥T Z with X⊕Y ≡T Y ′.

Then X is r.e. (Y ) since X is r.e. (Z) and Z ≤T Y .
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2.2 Relatively r.e. but not Relatively REA

We find a real A which is relatively r.e. but not relatively REA using a proof similar to

Lachlan’s construction of a minimal real [13]. We follow his definitions. We say σ and τ

are adjacent at m if σ(m) = 0, τ(m) = 1, and for all n 6= m we have σ(n) = τ(n). If

σ ⊆ τ we let τ − σ denote the string γ such that τ = σ γ̂. We say σ and τ split for e if

{e}σ(n)↓ 6= {e}τ (n)↓. We define the function tree T [σ] by (T [σ])(τ) = T (σ τ̂).

Definition 9. A function tree T is a 1-tree if for every σ ∈ 2<ω and i = 0, 1 we have T (σ 0̂)

adjacent to T (σ 1̂) at length(T (σ)) and the string T (σ î) − T (σ) depends only on i and

length(σ).

Definition 10. A function tree T is e-regular if for every σ we have T (σ 0̂) and T (σ 1̂)

split for e.

We define a function T : 1-trees × ω → 1-trees, by induction on the height of the

tree. (T (T, e))(〈〉) = T (〈〉). At stage s we label the strings of length s as σ1, σ2, . . . , σ2s and

let τ0 = 〈〉. We search inductively for τ1, τ2, . . . τ2s such that for i = 0, 1 and all j ≤ 2s we

have τj ⊇ τj−1 and (T (T, e))(σj )̂ î τj is on T . For each j we look for the first appropriate

γ, n, h such that

{e}(T (T,e))(σj)ˆ0ˆγ
h (n)↓ 6= {e}(T (T,e))(σj)ˆ1ˆγ

h (n)↓

We then let τj = γ. If a search does not halt then we let T (T, e) be undefined. Other-

wise, we define T (T, e) at level s + 1 by for i = 0, 1 and j ≤ 2s setting (T (T, e))(σj î) =

(T (T, e))(σj )̂ î τ2s .

We observe that if T is a recursive 1-tree and T (T, e) is defined then T (T, e) is an
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e-regular recursive 1-tree and a subtree of T .

We will build A using a sequence of recursive 1-trees 〈Tj | j ∈ ω〉 and strings

〈Aj | j ∈ ω〉 such that Tj+1 ⊆ Tj and Aj+1 ⊇ Aj for all j. We maintain Aj = Tj(〈〉) and let

A =
⋃

j∈ω
Aj .

Lemma 2.2.1. There exists a real which is relatively r.e. but not relatively REA.

Proof. We wish to meet the following requirements.

Re We does not witness A ≤e A.

N〈e,k〉 If W {e}A

k = A then A ≤T {e}A.

We begin with T0 =id and A0 = 〈〉. We order the priorities R1, N1, R2, N2, . . . and use

an injury free priority argument. At stage s + 1 we act to meet the strongest priority

requirement not yet satisfied. Let l = length (As).

To meet the requirementRe we check to see if there is a finite set E with (l, E) ∈We

and a string σ on Ts such that for all n ∈ E we have σ(n) = 1. If no such E exists then let

γ = 〈0〉. Otherwise, let τ be minimal such that σ ⊆ Ts(τ) and let γ be such that γ(0) = 1

and γ(n) = τ(n) for all n with 0 < n <length (τ).

We then let Ts+1 = Ts[γ] and As+1 = Ts+1(〈〉) and label Re as satisfied.

To meet the requirement N〈e,k〉 we check to see if T (Ts, e) is defined. If it is, we

let Ts+1 = T (Ts, e), As+1 = As, and label N〈e,m〉 as satisfied for all m.

Otherwise, there are strings ν and τ such that Ts(ν )̂ 0̂ τ is on Ts and for all σ with

Ts(ν )̂ 0̂ τˆσ on Ts and all n, h we fail to have

{e}Ts(ν)ˆ0ˆτˆσ
h (n)↓ 6= {e}Ts(ν)ˆ1ˆτˆσ

h (n)↓
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We then let m = length (Ts(ν)) and consider two cases.

Case 1: There is an i = 0, 1 and a σ such that letting µ = Ts(ν )̂ î τˆσ we have µ is on Ts

and m ∈W {e}µ

k . We then let µ0 = Ts(ν )̂ 0̂ τˆσ and let γ be minimal such that µ0 ⊆ Ts(γ).

Case 2: Else. We then let γ be minimal such that Ts(ν )̂ 1̂ τ ⊆ Ts(γ).

In either case, we let Ts+1 = Ts[γ] and As+1 = Ts+1(〈〉) and label N〈e,k〉 as satisfied.

This completes our construction. We now wish to verify that A is relatively r.e.

and not relatively REA. Let e ∈ ω be arbitrary. Let s be the step at which Re was satisfied

and let l = length (As). If l ∈ A then at step s we found a finite subset E of As+1 with

(l, E) ∈ We. Similarly, if l /∈ A then there is no finite subset E of A such that (l, E) ∈ We.

Hence l prevents We from witnessing A ≤e A. Thus A 6≤e A and by Theorem 2.1.1 we

conclude that A is relatively r.e.

To show A is not relatively REA, let e, k ∈ ω be arbitrary. Let s be the step at

which N〈e,k〉 was satisfied. We may assume {e}A is total since we are done if it is not. If

T was defined at step s then Ts+1 is e-regular and can be used to show A ≤T {e}A by the

usual minimality argument. If it was undefined, let m be as in step s and consider the two

cases. If the second case applied then m ∈ A but m /∈W {e}A

k . If the first case applied with

i = 0 then m /∈ A but m ∈W {e}A

k . Finally, if the first case applied with i = 1 let µ and µ0

be as in step s and let u be such that m ∈W {e}µ|u
k . Then {e}µ|u and {e}µ0 |u both converge

so they must be equal. This implies m ∈W {e}µ0

k so m ∈W {e}A

k , but we have m /∈ A.

Thus in all cases either A ≤T {e}A or A 6= W
{e}A

k . Therefore, A is not relatively

REA.
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2.3 Π0
1 Classes

Theorem 2.3.1. Every nonempty Π0
1 class contains a real which is not relatively r.e.

Proof. Let T be a recursive tree such that the members of the Π0
1 class are the paths through

T . We will inductively construct a real X which will be the rightmost path through T and

a set C which will witness X ≤e1 X. The procedure will be recursive and we will only add

elements to C so that C will be r.e.

We begin with X0 = 〈〉 and C0 = ∅. At stage s+1, if Xs 1̂ ∈ T we let Xs+1 = Xs 1̂

and Cs+1 = Cs. Otherwise, let l be greatest such that Xs|l̂ 0 ∈ T (l must exist since the

class is nonempty). We then let Xs+1 = Xs|l̂ 0 and Cs+1 = Cs ∪ (l, {n < l | Xs(n) = 1}).

We observe that X is the rightmost path through T (we set X(m) = 0 if and only

if there is no path through T extending X|m 1̂). We wish to show for all m ∈ ω that m /∈ X

if and only if (m,E) ∈ C for some finite E ⊂ X (viewed as a set). Suppose m /∈ X. Let s

be least such that for all t > s we have Xs|m = Xt|m. Then (m, {n < m | X(n) = 1}) was

added to C at stage s+ 1.

Conversely, suppose E ⊂ X and (m,E) was added to C at stage s. We note that

the value of X at n does not change from 0 to 1 unless the value of X at k changes from 1 to

0 for some k < n. As a result, if Xs|m 6= Xt|m for some t > s then {n < m | Xs(n) = 1} 6⊆

{n < m | X(n) = 1} so E 6⊆ X. Thus Xs|m = X|m and m /∈ X. Therefore C witnesses

X ≤e1 X so by Theorem 2.1.1, X is not relatively r.e.

Given any property with a nonempty Π0
1 class of reals holding the property we can

apply Theorem 2.3.1 to find a real X with this property which is not relatively r.e.
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Corollary 2.3.2. There is a 1-random real which is not relatively r.e.

Corollary 2.3.3. There is a diagonally non-recursive (DNR) real which is not relatively

r.e.

Corollary 2.3.4. There is a real coding a complete extension of Peano Arithmetic which

is not relatively r.e.

Corollary 2.3.5. There is a Schnorr trivial real which is not relatively r.e.

Corollary 2.3.2 contrasts with the result of Kautz that all 2-random reals are

relatively REA [10]. We also note that X has r.e. degree so that when X is 1-random, X

has degree 0′. The last corollary follows from Franklin’s result that there is a Π0
1 class of

Schnorr trivial reals [5].

2.4 Relatively Simple and Above

We show that every 1-generic real X is relatively simple and above by an argument similar

to the arithmetic form of the proof of Theorem 2.1.1. To obtain a witness Y showing that

X is relatively simple and above, we will need to find a sufficiently generic order in which

to enumerate the elements of X. We find that X itself can be used to compute this order.

Lemma 2.4.1. Let X be 1-generic. Then X is relatively simple and above.

Proof. Let Y = {〈n,m〉 | n ∈ X ∧ 〈n,m〉 /∈ X}. Then Y ≤T X and X is r.e. (Y ) since

n ∈ X if and only if ∃m [〈n,m〉 ∈ Y ] (since X is generic, we can’t have 〈n,m〉 ∈ X for every

m). It remains to show that there is no infinite Z ⊆ X such that Z is r.e. (Y ).
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Suppose towards a contradiction there is an infinite Z ⊆ X such that Z = W Y
k

for some k. We define a function j : 2<ω → 2<ω such that Y = j(X). Let j(σ(〈n,m〉)) = 1

iff σ(n) = 1 and σ(〈n,m〉) = 0. Since X ∩ W j(X)
k = ∅ and X is 1-generic, we can find

a condition such that for every extension τ we have τ ∩W j(τ)
k = ∅. We will then get a

contradiction by adding an element to τ without changing j(τ).

Let S = {σ | ∃n [n ∈ σ ∧ n ∈ W
j(σ)
k ]}. Then X /∈ S, so let l be such that for

every τ extending X|l we have τ /∈ S. Since Z is infinite, let p ∈ Z with p > l and let t > l

be such that p ∈ W j(X|t)
k . We note that for any σ ⊇ X|l such that j(σ) = j(X|t) we have

p ∈W j(σ)
k and σ /∈ S, so p /∈ σ. We can now obtain a contradiction.

Claim. There is a σ ⊇ X|l such that j(σ) = j(X|t) and p ∈ σ.

Proof. We define a sequence of strings σi of length t inductively. Let σ0 = X|t and σ1 = σ0

except σ1(p) = 1. At each stage we will remove all witnesses of changes made in the previous

stage. We assume our pairing function is such that 〈m,n〉 > max(m,n) for all m,n.

For stage i ≥ 2 we let σi(〈b, a〉) = 1 if σi−1(b) 6= σi−2(b) and let σi(〈b, a〉) =

σi−1(〈b, a〉) otherwise. We note that since 〈b, a〉 > b, the least m such that σi(m) 6= σi−1(m)

is strictly increasing by stage. Hence for some stage we have σi = σi−1, and we let σ be

this σi.

We have p ∈ σ and note σ ⊇ X|l since p > l. It remains to show that j(σ) = j(X|t).

Let n,m be arbitrary such that [j(X|t)](〈n,m〉) = 1. ThenX(n) = 1 andX(〈n,m〉) = 0. So

at every stage i, σi(n) = 1 and σi(〈n,m〉) = σi−1(〈n,m〉). Hence σ(n) = 1 and σ(〈n,m〉) = 0

so [j(σ)](〈n,m〉) = 1. Conversely, let n,m be arbitrary such that [j(σ)](〈n,m〉) = 1. Then

σ(n) = 1 and σ(〈n,m〉) = 0. The later implies X(〈n,m〉) = 0. Suppose X(n) = 0. Let i
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be least such that σi(n) = 1. Then σi+1(〈n,m〉) = 1, so σ(〈n,m〉) = 1 for a contradiction.

Hence X(n) = 1 so [j(X|t)](〈n,m〉) = 1. Therefore j(σ) = j(X|t).

Thus, Z is not r.e. (Y ). Therefore X is relatively simple and above.

2.5 Other Results

We saw in Remark 2.1.2 that if X is relatively r.e. then we can find a witness Y which is

close to X. On the other hand, we can also choose a witness Y which is not even arithmetic

in X. To do this, we need to use a modified version of Theorem 2.1.1.

Corollary 2.5.1. Let X and T be reals such that X 6≤e X⊕T ⊕T . Then there is a Y ≥T T

such that X is r.e. (Y ) and X 6≤T Y .

Proof. The proof is very similar to that of theorem 2.1.1. We use the same partial order

and let G be generic in X ⊕ T . We then let Y = m(G ⊕ T ) and relativize the verification

to T . At the end we use the fact that we have a Σ1(T ) set witnessing X ≤e1(T ) X to get a

Σ1 set witnessing X ≤e1 X ⊕ T ⊕ T .

Let X be relatively r.e. and let G be an arithmetic generic (X). We can now

obtain a witness Y which is not arithmetic in X by choosing Y so that G ≤T Y .

Lemma 2.5.2. Let X be a real such that X 6≤e X. Then there is a real Y which is not

arithmetic in X such that X is r.e. (Y ) and X 6≤T Y .

Proof. Let G be an arithmetic generic (X). By the above lemma, it suffices to show that

X 6≤e X ⊕G⊕G. Suppose not, witnessed by C. Let S be given by

S = {σ ∈ 2<ω | ∃n ∈ X ∃F ⊂ (3 · length(σ))[〈n, F 〉 ∈ C ∧ F ⊆ X|length(σ)⊕ σ ⊕ σ]}
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Then G /∈ S so let l be such that for all τ ⊇ G|l we have τ /∈ S. Let

B = {〈n,A〉 | ∃σ ⊇ G|l ∃F [〈n, F 〉 ∈ C ∧ F ⊆ A⊕ σ ⊕ σ]}

Then B witnesses that X ≤e X for a contradiction.
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Chapter 3

Reals n-generic relative to some

perfect tree

3.1 Co-Countably Many Reals

We wish to show that the set of reals not n-generic relative to any perfect tree is countable.

D. Martin [14] used Borel determinacy to show that any property which is Borel and cofinal

in the Turing degrees is represented on every degree in a cone of Turing degrees. The base

of this cone is the complexity of the winning strategy for an associated game.

Theorem 3.1.1 (Martin [14]). Let B be a Borel set of reals such that for every Turing

degree d there is an e ≥T d and an X in e such that X ∈ B. Then there is a degree c such

that for all b ≥T c there is a Y in b such that Y ∈ B.

Proof. Consider a two person game where player I constructs a real X and player II con-

structs a real Y . Play alternates between the players, each adding the next digit to the
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real they are constructing for their turn. Player I wins iff Y ≤T X and either X 6≤T Y or

X ∈ B.

By Borel determinacy, there exists a winning strategy σ. Suppose σ is a winning

strategy for II. Since B is cofinal in the Turing degrees, let Z ∈ B with σ ≤T Z. Let I play

Z and II play according to σ resulting in Y . But then since σ ≤T Z, we have Y ≤T Z with

Z ∈ B so I wins for a contradiction. Hence σ must be a winning strategy for I.

Let Z ≥T σ be an arbitrary real in the cone above σ. Have II play Z and I play

according to σ, resulting in X. Since σ ≤T Z we have X ≤T Z. Since I wins, Z ≤T X and

X ∈ B. Hence for any Z in the cone, there is an X ∈ B such that X ≡T Z.

Reimann and Slaman [17] have developed a powerful way to relativize this lemma.

Let B ⊆ 2ω×2ω denote a set of reals where the first real holds some property relative to the

second. Let BZ = {X | (X,Z) ∈ B} and let the notation X ≡T,A Y mean X ⊕A ≡T Y ⊕A.

Suppose that for every Z the set BZ is Borel in Z and cofinal in the Turing degrees as in

the above method for generating a cone. They prove that for all but countably many reals

X, there exist reals Y and G such that X ≡T,G Y and Y ∈ BG.

Let β be the least ordinal such that Lβ satisfies (enough) ZFC and let X /∈ Lβ be

arbitrary (Lβ is countable). Reimann and Slaman use Kumabe-Slaman forcing to find a

real G such that Lβ[G] |= ZFC and every element of 2ω ∩ Lβ[G] is recursive in X ⊕G. In

particular, the strategy for the associated game relative to G is recursive in X ⊕G. So by

Lemma 3.1.1 relativized to G there exists Y ∈ BG with Y ≡T,G X.

Thus to prove all but countably many reals are n-generic relative to some perfect

tree, we need to find a set B such that for any X,Y,G with Y ≡T,G X and Y ∈ BG we have
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X n-generic relative to some perfect tree. B must also be Borel and such that for every Z

the set BZ is cofinal in the Turing degrees. We find it suffices to let B be the set of reals of

Turing degree X ⊕A for any X,A such that X is (n+ 1)-generic (A). We use the following

lemma.

Lemma 3.1.2. Let n ≥ 2, A be a set, X be n-generic (A), and X ≡T,A Y . Then Y is

(n− 1)-generic relative to some perfect tree.

Proof. Let Ψ : X → Y and Φ : Y → X be A-recursive Turing reductions that witness

X ≡T,A Y . Since X is at least 2-generic (A), let p ∈ X be such that p  Φ ◦Ψ = id ∧ Ψ

total. Let T = {σ | ∃q ⊇ p[σ ⊆ Ψ(q)]}. T is a perfect tree by our choice of p. We claim that

Y is (n− 1)-generic relative to T .

Let S be an arbitrary Σ0
n−1(T ) set. We consider the pullback Ψ−1(S) =

{x | ∃y [Ψ(x) ⊇ y ∧ y ∈ S]}. T is Σ0
1(A) so S is Σ0

n(A) and Ψ−1(S) is Σ0
n(A). We now

apply the genericity of X for the pullback to get the genericity of Y for S.

Since X is n-generic (A) we have two possible cases.

Case 1: ∃n[X|n ∈ Ψ−1(S)]. We then let m be such that Y |m ⊆ Ψ(X|n) and Y |m ∈ S.

Case 2: ∃n∀q ⊇ X|n[q /∈ Ψ−1(S)]. Let m be such that Φ(Y |m) ⊇ X|n. We will show

Y |m witnesses Y is (n − 1)-generic relative to T for S. Consider an arbitrary r ∈ T

such that r ⊇ Y |m. Since r ∈ T , let q be such that Ψ(q) ⊇ r and q ⊇ p. We note

q ⊇ Φ(Ψ(q)) ⊇ Φ(r) ⊇ Φ(Y |m) ⊇ X|n. Hence by the condition for this case, q /∈ Ψ−1(S)

so r /∈ S. Since r is arbitrary, for all r ⊇ Y |m with r ∈ T we have r /∈ S.

We note that a similar proof can be used to show for n ≥ 1 that sets in the same

truth table degree as an n-generic are n-generic relative to some perfect tree.
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We can now use the approach outlined above.

Theorem 3.1.3. For every n ∈ ω, the set of reals not n-generic relative to some perfect

tree is countable.

Proof. Fix n ∈ ω and let

B = {(x, g) | ∃a∃h[h is (n+ 1)-generic (a⊕ g) and x ≡T,g a⊕ h}

B is arithmetic (since a, h ≤T x⊕ g) so B is Borel. Given any reals C and Z, we let H be

(n+ 1)-generic (C ⊕Z) and X = H ⊕C to get X ∈ BZ with X ≥T C. Hence BZ is cofinal

in the Turing degrees. By the theorem of Reimann and Slaman [17] noted above, for all

but countably many reals X, there exist Y and G such that X ≡T,G Y and Y ∈ BG.

Thus there exist reals A and H such that A⊕H ≡T,G Y and H is (n+ 1)-generic

(A⊕G). Hence Y ≡T,A⊕G H, so X ≡T,A⊕G H. By Lemma 3.1.2, X is n-generic relative to

some perfect tree. Therefore, all but countably many reals are n-generic relative to some

perfect tree.

3.2 ZFC− Required

If we examine the proof that the set of reals not n-generic relative to any perfect tree is

countable, we see that the greatest use of the axioms of ZFC comes from the application of

Borel determinacy. The proof uses determinacy of a Π0
n+3 game on ωω, so it requires ZFC−

and the existence of n iterates of the power set of ω. We prove that for sufficiently large n

this is essentially the best possible result. In particular, we prove that for any finite k the

statement “For all n, the set of reals not n-generic relative to any perfect tree is countable”
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cannot be proved from ZFC− and k iterates of the power set of ω. This suggests the set

of reals not n-generic relative to any perfect tree is a countable set of considerable size and

complexity.

Theorem 3.2.1. For every k ∈ ω the statement “For all n, the set of reals not n-generic

relative to any perfect tree is countable” cannot be proved from ZFC−+ “∃k iterates of the

power set of ω”.

To prove this theorem we use a template developed by Reimann and Slaman [17]

for reals random relative to a continuous measure. We work with the case k = 0; the general

case follows the same pattern. Let λ be the least ordinal such that Lλ |= ZFC− and let O

be the set of limit ordinals below λ. Let Mα, for α ∈ O, denote master codes. These are the

elementary diagrams of canonical countings of Lα. Reimann and Slaman prove the theorem

by showing that for some fixed n, for every α ∈ O, the master code Mα is not n-random

relative to a continuous measure.

To show this, they assume towards a contradiction that some Mβ is n-random

relative to the measure µ. It is arithmetic to say that M is a master code for an ω-model

of “V = Lα and α a limit and α 6≥ λ”. Note such an ω-model need not be well-founded.

They show it is also arithmetic to require that for all such M and N and some fixed m ∈ ω

either one coded model embeds into the other or there is a Σ0
m(M ⊕N) set witnessing the

ill-foundedness of one of the coded models.

Reimann and Slaman define a set M, arithmetic in µ, of such psuedo-master codes

which are recursive in µ and not shown to be ill-founded by such a comparison. They then

define an order on M such that the well founded part of this order, I, is arithmetic in
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µ ⊕Mβ and equals the set of M ∈ M which are actual master codes Mα. Since random

sets cannot accelerate the calculation of well-foundedness, I is arithmetic in µ.

Let γ ≤ β be least such thatMγ 6≤T µ. Since γ < λ there is a realX ∈ Def(Lγ)\Lγ .

By taking a Skolem hull of the parameters definingX, Reimann and Slaman show thatMγ is

arithmetic in I, hence arithmetic in µ, and Mγ ≤T Mβ. Since randomness cannot accelerate

arithmetic definability, Mγ ≤T µ for a contradiction.

This proof uses only two facts about randomness. Namely, that it cannot accelerate

arithmetic definability or calculations of well-foundedness. To complete a similar proof for

genericity with the perfect tree T in place of the measure µ we need only demonstrate the

corresponding facts for genericity. For n sufficiently large relative to a fixed k,m and G

n-generic relative to the perfect tree T , we must show:

1. If A is Σ0
k(T ) and Σ0

m(G) then A is Σ0
m(T ).

2. If WF is the well founded part of a linear order recursive in T and WF ≤T G⊕ T

then WF ≤T T .

We can routinely relativize to a perfect tree the proof that for reals A,G where G

is k-generic and A is Σ0
k and Σ0

m(G), we get that A is Σ0
m. To prove the second fact, we use

the following lemma.

Lemma 3.2.2. Let T be a perfect tree and L a code for a linear order where L ≤T T . Let

WF be the code for the well founded part of L. Let G be 2-generic relative to T and such

that WF ≤T G⊕ T . Then WF ≤T T .

Proof. By the first fact above, it suffices to show WF is Σ0
j (T ) for some j. Let Φ be a

T -recursive Turing reduction such that Φ(G) = WF . For b ∈ L let P (b) be the set of reals
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which code initial segments of L below b. Let R(b) ≤T L be the tree defined below such

that P (b) is the set of paths through R(b).

R(b) = {σ | ∀m,n < length(σ)[(m ∈ σ → m ≤L b) ∧

((m ∈ σ ∧ n ≤L m) → n ∈ σ)]}

We define Q as the set of strings in T below which Φ does not split on T .

Q = {σ ∈ T | ¬∃τ, γ ∈ T [τ, γ ⊇ σ ∧ Φ(τ) ⊥ Φ(γ)]}

Suppose for some n, G|n ∈ Q. Then we can calculate WF (m), i.e. whether m ∈ WF , by

looking for the first σ ∈ T such that σ ⊇ G|n and [Φ(σ)](m)↓ and taking its value. Hence

WF ≤T T and we are done. Thus we may assume for all n, G|n 6∈ Q. Since G is 2-generic

relative to T , there is an l such that for all τ ⊇ G|l with τ ∈ T we have τ 6∈ Q.

We will use the fact that b ∈ WF iff WF 6∈ P (b). Let S = {σ | Φ(σ) 6∈ R(b)}. We

will determine if b ∈ WF by checking for the existence of a real which is generic for S and

computes an element of P (b) using Φ. Let Θ(b) be the statement

∃σ ∈ T [σ ⊇ G|l ∧ ∀τ ∈ T [τ ⊇ σ → Φ(τ) ∈ R(b)]]

Claim. b 6∈WF ⇔ Θ(b).

Proof. (=⇒) WF ∈ P (b) since b 6∈WF . Hence Φ(G) ∈ P (b) so G 6∈ S. Since G is 1-generic

relative to T , there is a k such that for all τ ∈ T with τ ⊇ G|k we have τ 6∈ S. Thus G|k

witnesses Θ(b).

(⇐=) Let σ witness Θ(b). Then for all τ ∈ T with τ ⊇ σ we have Φ(τ) ∈ R(b).

Also, since σ ⊇ G|l, for all such τ we have τ 6∈ Q so Φ splits on T below τ . Using these
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facts we can construct a perfect subtree of R(b) by applying Φ to T below σ. Hence P (b)

is uncountable. Since there are only countably many well founded initial segments of L,

b 6∈WF .

By the claim WF is Σ0
2(T ) as desired. Hence WF ≤T T .

3.3 Iterated Hyperjumps

We now look at the set of reals which are n-generic relative to some perfect tree for lower

values of n. We still find that the set of reals not n-generic relative to any perfect tree is

a large countable set. It contains reals of high complexity and its countability cannot be

proved in large fragments of second order arithmetic. We show that the finite iterates of

the hyperjump, O(n), are not 2-generic relative to any perfect tree and the iterates O(α) are

not 5-generic relative to any perfect tree for any α below the least λ such that supβ<λ(βth

admissible) = λ.

For simplicity, we start with the case of O. This set can be viewed as

{e | Ue is well-founded} where Ue denotes the eth recursive tree in ω<ω. We note O then

has the property that the well-foundedness of subtrees cannot contradict the decision made

for the parent tree. This can be characterized by a Σ0
2 set, S, so that if O were 2-generic

relative to some T then T would be able to calculate O by tracing subtrees.

Lemma 3.3.1. O is not 2-generic relative to any perfect tree.

Proof. Suppose not, witnessed by T . Define O = {e | Ue is well-founded} as above. Let h



26

be a recursive function defined by Uh(e,γ) = {σ ∈ Ue | σ ⊆ γ ∨ σ ⊇ γ}. Let

S = {τ ∈ T | ∃n∃l[τ(n) = 0 ∧ ¬(∃γ ∈ Un)(∃θ ∈ T )[length(γ) ≥ l ∧

θ ⊇ τ ∧ θ(h(n, γ)) = 0]]}

The set S contains finite strings τ which say some tree Un is ill-founded, but for some length

l, there is no extension of τ in T that says some subtree of Un with root length at least l is

ill-founded. In short, τ says Un is ill-founded but there is no sequence of extensions in T to

witness it.

O has a sequence of subtrees witnessing the ill-foundedness of a tree, found simply

by descending along any infinite path. Hence, O /∈ S. Since S is Σ0
2(T ) and we have

assumed O is 2-generic relative to T , we let k be such that for any σ ∈ T extending O|k we

have σ /∈ S. We can now use the fact that these extensions are sufficiently well behaved to

calculate O from T .

Claim. For any number e, we have e ∈ O ⇐⇒ ¬∃σ ∈ T [σ ⊇ O|k ∧ σ(e) = 0].

Proof. (⇐=) Let σ = O|max(k, e) + 1. σ ∈ T since O is a path in T , so σ(e) = O(e) = 1.

Hence e ∈ O.

(=⇒) Let e ∈ O and suppose the conclusion fails, witnessed by σ. Ue is well-

founded since e ∈ O. We will construct an infinite path through Ue to get the desired

contradiction. We use an induction to simultaneously construct paths γ through Ue and θ

through T . Let j0 denote e and jm+1 denote h(jm, γm+1). We maintain inductively that

θm(jm) = 0.

We begin with γ0 = 〈〉 and θ0 = σ and note θ0(j0)) = σ(e) = 0 by our assumption.
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Let γm and θm be given. θm ⊇ σ ⊇ O|k so θm /∈ S. Hence we have

∀n∀l[θm(n) 6= 0 ∨ ∃α ∈ Un∃β ∈ T [length(α) ≥ l ∧ β ⊇ θm ∧

β(h(n, α)) = 0]]

Choosing n = jm and l =length(γm)+1 and noting by our induction hypothesis θm(jm) = 0,

we get

∃α ∈ Ujm∃β ∈ T [length(α) ≥ length(γm) + 1 ∧ β ⊇ θm ∧

β(h(jm, α)) = 0]

We now let γm+1 = α and θm+1 = β. We note that γm+1 ⊇ γm since γm+1 ∈ Uh(jm−1,γm)

and that θm+1(jm+1) = θm+1(h(jm, γm+1)) = 0, completing the induction.

Thus O is Π0
1(T ), contradicting O being 2-generic relative to T .

For the successor case, we apply the same ideas used in the above lemma to the

column of O(n) which computes O.

Lemma 3.3.2. Let X ≥T O be 2-generic relative to the perfect tree T . Then T ≥T O.

Proof. Let Φ be a Turing reduction such that Φ(X) = O. We define S as before, this time

for the image under Φ.

S = {τ ∈ T | ∃n∃l[[Φ(τ)](n) = 0 ∧ ¬(∃γ ∈ Un)(∃θ ∈ T )[length(γ) ≥ l ∧

θ ⊇ τ ∧ [Φ(θ)](h(n, γ)) = 0]]}

We note S is Σ0
2(T ) and X /∈ S. Since X is 2-generic relative to T , we let k be such that

for any σ ∈ T extending X|k we have σ /∈ S. We now claim that for any e, we have e ∈ O
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if and only if there does not exist a σ ∈ T with σ ⊇ X|k and [Φ(σ)](e) = 0. This is proved

in substantially the same manner as the claim in the previous lemma. As a result, O is

Π0
1(T ). Since X is 2-generic relative to T and O ≤T X, we get O ≤T T as desired.

Corollary 3.3.3. For all n ∈ ω, O(n) is not 2-generic relative to any perfect tree.

Proof. Fix n and suppose not, witnessed by T . We show by induction on m ≤ n that

O(m) ≤T T . Given O(m) ≤T T , we relativize Lemma 3.3.2 to O(m) to get O(m+1) ≤T T ,

completing the induction. Hence O(n) ≤T T , contradicting our assumption that O(n) is

2-generic relative to T .

Corollary 3.3.4. The statement “All but countably many reals are 2-generic relative to

some perfect tree” fails to hold in Π1
1-CA.

Proof. Consider the standard model of Π1
1-CA containing the reals X such that ∃n[X ≤T

O(n)]. The set {O(n) | n ∈ ω} fails to be countable in this model.

To handle limit ordinals, we use a lemma in the style of Enderton and Putnam [4].

Lemma 3.3.5 (Slaman [20]). Let A be a set and λ a recursive limit ordinal. Suppose that

for all β < λ, O(β) ≤T A. Then O(λ) is Σ0
5(A).

Proof. We continue to use O = {e | Ue is well founded} where Ue denotes the eth recursive

tree in ω<ω. Since O ≤T A we can define O from A by noting that Ue is well founded iff

Ue has no infinite path recursive in A. Hence O is uniformly Π0
3(A). Similarly, we can get

OO is uniformly Π0
4(A) by X = O ⊕OO iff

(X)0 = O ∧ (e ∈ (X)1 ↔ U (X)0
e has no infinite path recursive in A)
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where (X)0 and (X)1 denote the two columns of X.

We extend this idea to find a uniform definition for O(λ). Fix a system of notations,

o, for λ. We have

(b, k) ∈ O(λ) ⇔ ∃m[{m}A = Y ∧ k ∈ (Y )b ∧ [∀c∀d[o(c) < o(b) →

((o(c) = o(d) + 1 → Γ((Y )d, (Y )c)) ∧

(o(c) a limit ordinal → ∀n∀p[(Y )cn(p) = ((Y )c)n(p)]))]]]

where c0, c1, c2, . . . is the fundamental sequence for o(c) and Γ(X,Z) is the statement

∀e[e ∈ Z ↔ UX
e has no infinite path recursive in A]

Then Γ is Π0
4(A) so O(λ) is Σ0

5(A).

If we repeat the proof with O(λ) we improve the result slightly to O(λ) is ∆0
5(A).

Now we can complete our induction.

Theorem 3.3.6. Let λ be the least ordinal such that supβ<λ(βth admissible) = λ. Then

for all α < λ we have O(α) is not 5-generic relative to any perfect tree.

Proof. Suppose not, witnessed by β and T . We define the function f by f(0) = ωCK
1 ,

f(δ + 1) = least admissible greater than f(δ), and for limit δ, f(δ) = supξ<δ f(ξ). We note

that λ is the least fixed point of f . Using the fact that ωO
(δ)

1 < ωO
(δ+1)

1 for any δ [18], we

see by induction that f(δ) < ωO
(δ)

1 for all δ.

Let α be least such that O(α) 6≤T T . Then α ≤ β < λ so α < f(α). By Lemma

3.3.2, α is a nonzero limit ordinal so choose γ < α such that α < f(γ). Then α < ωO
(γ)

1

so we can fix a system of notations, o, for α recursive in O(γ+1). Since γ + 1 < α we have
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O(γ+1) ≤T T . We now apply Lemma 3.3.5 using o and T to get that O(α) ≤T T for a

contradiction.

3.4 1-generics

In the 1-generic case, we can use a variety of approaches to identify sets of reals that are

1-generic relative to some perfect tree and sets whose members cannot have this property.

A real is said to be ranked if it is a member of a countable Π0
1 set. Equivalently, a

real is ranked if it is a path through a recursive tree with no perfect subtrees. The reader is

referred to Cenzer et al. [3] for details on the topic, including a proof that for all recursive

ordinals α there is a ranked set of degree 0(α). Here we demonstrate these reals are not

1-generic relative to any perfect tree.

Lemma 3.4.1. If X is 1-generic relative to some perfect tree, then X is not ranked.

Proof. Suppose not. Let X be 1-generic relative to the perfect tree T and a path through

the recursive tree U with no perfect subtrees. Let S = {σ ∈ T | σ /∈ U}. Then S is recursive

in T and X /∈ S, so there exists an n such that no τ ∈ T extending X|n is in S. Hence for

every τ ∈ T such that τ ⊇ X|n we have τ ∈ U . But then U has a perfect subtree, for a

contradiction.

In fact, the above proof shows reals recursively generic relative to some perfect

tree are not ranked. It follows from Cenzer et al. [3] and this lemma that there are reals

arbitrarily high in the hyperarithmetic degrees which are not 1-generic relative to any perfect

tree. We note the proof of Lemma 3.1.2 can be relativized to an initial perfect tree. Using
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this we observe that no Turing degree can contain both a ranked set and a real 2-generic

relative to some perfect tree (and no truth table degree a ranked set and a real 1-generic

relative to some perfect tree). Hence no ∆0
2 set is 2-generic relative to some perfect tree,

and the degrees 0(α) for any recursive α contain no reals 2-generic relative to some perfect

tree.

The techniques used in Lemmas 3.2.2 and 3.4.1 can be used to further restrict

possibilities for ranked reals.

Theorem 3.4.2. Let G be a 2-generic real and let X be a nonrecursive real with X ≤T G.

Then X is not ranked.

Proof. Suppose not. Let U be a recursive tree with no perfect subtrees such that X is a

path through U . Let Φ be a Turing reduction such that Φ(G) = X. Let Q be the set of

strings below which Φ does not split on U .

Q = {σ ∈ 2<ω | ¬∃τ, γ ⊇ σ [Φ(τ),Φ(γ) ∈ U ∧ Φ(τ) ⊥ Φ(γ)}

Suppose for some l we have G|l ∈ Q. Then we could calculate X(n) by searching for the

first σ ⊇ G|l such that Φ(σ) ∈ U and has length at least n. We then let X(n) = [Φ(σ)](n).

Hence X would be recursive for a contradiction. Thus G /∈ Q and we let l be such that for

all τ ⊇ G|l we have τ /∈ Q.

Let S = {σ ⊇ G|l | Φ(σ) /∈ U}. Then G /∈ S so let m > l be such that for all

τ ⊇ G|m we have τ /∈ S. Hence for all σ ⊇ G|m we have Φ(σ) ∈ U and Φ splits below σ.

Thus we can build a perfect subtree of U by applying Φ below G|m, for a contradiction.

We note this proof shows the statement holds for Π1-generics.
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We can also attempt to classify which reals are 1-generic relative to some perfect

tree by use of the r.e. (Ershov) and REA hierarchies. The reader is referred to Jockusch

and Shore [8] for details on these hierarchies. We begin by observing that no real whose

degree is at a finite level of the REA hierarchy (hence also the r.e. hierarchy) is 1-generic

relative to some perfect tree.

Lemma 3.4.3 (Slaman [19]). Let n ∈ ω, X a real of n-REA degree. Then X is not

1-generic relative to any perfect tree.

Proof. Fix n and X and let W be an n-REA set with X ≡T W . Let W1,W2, . . .

Wn = W witness that W is n-REA; for all i ≤ n we have Wi ≤T Wi+1 and Wi+1 is r.e.(Wi).

Suppose X is 1-generic relative to T . We show by induction that for all m ≤ n we have

Wm ≤T T using the following claim:

Claim. Let Y be r.e.(T ) and Y ≤T X. Then Y ≤T T .

Proof. It suffices to show Y is r.e.(T ). Since Y ≤T X, let {e}X = Y . Let

S = {q | ∃n[{e}q(n)↓= 0 ∧ n ∈ Y ]}

We note X /∈ S and S is r.e.(T ) since Y is r.e.(T ). Hence for some l, every q extending X|l

is not in S. We can now describe Y by noting that n ∈ Y iff

∃q ⊇ X|l[{e}q(n)↓= 0]. Hence Y is r.e.(T ) as desired.

For the induction, given Wm ≤T T we note that Wm+1 is r.e.(Wm), hence r.e.(T ),

and apply the claim to Wm+1. As a result W ≤T T so X ≤T T for a contradiction.

We might next hope to show sets of ω-REA degree are not 1-generic relative to

any perfect tree. However, we cannot even do this for sets which are ω-r.e. In proving
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the Friedberg Inversion Theorem for the truth table degrees, J. Mohrherr [16] showed by a

reduction that there is a 1-generic G such that G ≤tt 0′, hence G is ω-r.e. Here we provide

a direct construction. We use the definition that X is ω-r.e. if for some partial recursive

ψ : ω × ω → 2 we have X(n) = ψ(b, n) where b is least such that ψ(b, n)↓.

Lemma 3.4.4. There is a 1-generic real which is ω-r.e.

Proof. In this construction we extend to meet the first r.e. set we find while still looking

for earlier r.e. sets skipped over. If we find a set that has been skipped, we start over again

from that point. We start with a preliminary construction where we don’t restart in order

to find a recursive bound, f , on the number of changes we may need to make.

We recursively construct f : ω → ω and σ ∈ 2ω in stages. Let f(0) = 0 and

σ0 = 〈〉. At stage n + 1 we search simultaneously for e > f(length(σn)), τ ⊇ σn, and s to

find {e}τ
s ↓. We then let σn+1 = τ and extend f by setting f(k) = e for all k such that

length(σn) < k ≤length(σn+1).

For the main construction, we build in stages our generic X ∈ 2ω and the partial

recursive witness, ψ, that X is ω-r.e. We also use some numeric variables for bookkeeping.

r denotes the r.e. set we are looking at, ki for i ∈ ω the number of corrections at the i-th

r.e. set, and mi for i ∈ ω the length of the initial segment of X currently meeting the i-th

r.e. set (0 if not yet met). We start with ψ = ∅, X = 〈〉, r = 0, and ki,mi = 0 for all i.

At stage n+1 we search simultaneously for i such thatmi = 0, τ⊇ Xn|maxj<i(mj),

and s to find {i}τ
s ↓. If i > r we have found a new r.e. set and add it by lettingmi =length(τ),

Xn+1 = τ , r = i, and for l such that length(Xn) < l ≤length(Xn+1) we let ψ(f(l)− kl, l) =

Xn+1(l). If instead i < r we have found a r.e. set we have skipped over and restart at that
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point. We do this by first setting mi =length(τ) and for l such that maxj<i(mj) < l ≤ mr

setting kl to kl + 1. We next reset Xn+1 to τ (it will not extend Xn, but will extend

Xn|maxj<i(mj)). Finally, for l such that maxj<i(mj) < l ≤ mi we extend ψ by letting

ψ(f(l)− kl, l) = Xn+1(l) and then for j with i < j ≤ r we set mj = 0.

We note that the values of X used to meet the nth r.e. set are changed at most

n times, once for every earlier r.e. set that was skipped over and discovered later. The

function f bounds the number of corrections needed, and ψ(b, n) witnesses X is ω-r.e. by

starting with b = f(n) and moving b down one every time a correction is made.

We note that by the REA Completeness Theorem (Jockusch and Shore [8]) this

gives that for every X ≥T ∅(ω) there are sets A and J such that X ≡T A ⊕ J where J is

1-generic (A).
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Chapter 4

Relatively hyperimmune-free reals

4.1 Co-Countably Many Reals

We show that all but countably many reals are relatively hyperimmune-free by using the

theorem of Reimann and Slaman [17] as in Section 3.1.

Theorem 4.1.1. The set of reals which are not relatively hyperimmune-free is countable

Proof. Let B = {(X,Z) | ∃M <T X [Z ≤T M ∧ ∀f ≤T M ⊕X ∃g ≤T M [g dominates f ]}.

We note B is arithmetic (M <T X) hence Borel. Let C and Z be arbitrary reals. Let

M = C ⊕ Z and let Y be a Spector minimal cover of M . Then C ≤T Y and M witnesses

that Y ∈ BZ . Hence for every Z we have BZ cofinal in the Turing degrees. Thus by the

theorem of Reimann and Slaman [17] for all but countably many reals X there exists reals

Y and G such that X ≡T,G Y and Y ∈ BG.

Let M witness that Y ∈ BG. We wish to show that M witnesses that X is

relatively hyperimmune-free. Suppose X ≤T M . Then since G ≤T M we have X⊕G ≤T M
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so Y ≤T M for a contradiction. Hence X 6≤T M . Let f ≤T X ⊕M be arbitrary. Since

G ≤T M we have X⊕M ≤T Y ⊕M so f ≤T Y ⊕M . Since Y ∈ BG there is a g ≤T M such

that g dominates f . Thus M witnesses that X is relatively hyperimmune-free. Therefore,

all but countably many reals are relatively hyperimmune-free.

4.2 Iterated Hyperjumps

We begin by showing all reals of α-REA degree are not relatively hyperimmune-free. We

see that an r.e. real Wn cannot be relatively hyperimmune-free since Wn can compute the

function f where f(m) = 0 if m /∈Wn and f(m) is the least s such that m ∈Wn,s otherwise.

Any function g which dominates f can then compute Wn by m ∈Wn ↔ m ∈Wn,g(m). Our

proof will use this procedure inductively.

Lemma 4.2.1. Let α < ωCK
1 and X be a real of α-REA degree. Then X is not relatively

hyperimmune-free.

Proof. Suppose not, witnessed by M . Let S be a system of notations for α and let h be a

recursive function such that (X)n = W
(X)l

h(l) ⊕ (X)l for all n, l such that S(n) = S(l)+1. We

define a function f by f(〈m,n〉) is the least z such that m ∈W (X)k

h(k),z if for some β we have

S(k) = β, S(n) = β + 1, and m ∈ (X)n. We let f(〈m,n〉) = 0 otherwise. We note f ≤T X

so there is some g ≤T M such that g dominates f .

We will show by induction that for all β ≤ α and l such that S(l) = β we have

(X)l ≤T g uniformly. For successor ordinals, let l, n be such that S(n) = S(l) + 1 and

(X)l ≤T g uniformly. Let Z be such that (X)n = Z ⊕ (X)l. Then m ∈ Z ↔ m ∈

W
(X)l

h(l),g(〈m,n〉). For limit ordinals, let λ, b be such that S(b) = λ and for all l with S(l) < λ
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we have (X)l ≤T g uniformly. Then 〈p, l〉 ∈ (X)b ↔ p ∈ (X)l and S(l) < b.

By the induction, X ≤T g so X ≤T M for a contradiction.

We note that the above proof can be relativized to any Y which is not relatively

hyperimmune-free. Hence if X is relatively hyperimmune-free and Y ≤T X ≤T Y ′ then Y

is relatively hyperimmune-free.

We will use an inductive procedure to show iterated hyperjumps are not relatively

hyperimmune-free, as in section 3.3. We will also continue to view O as {e | Ue is well

founded } where Ue denotes the eth recursive tree in ω<ω. We will show O is not relatively

hyperimmune-free by having it compute a function which bounds how far to the right a

path through Ue can be.

Lemma 4.2.2. O is not relatively hyperimmune-free.

Proof. Suppose not, witnessed by M . For e /∈ O, let τe denote the leftmost path through

Ue. We note τe ≤T O since O can trace subtrees to construct τe. Define the function f by

f(〈e, n〉) = τe(n) if e /∈ O and f(〈e, n〉) = 0 otherwise. We note f ≤T O so let g ≤T M

dominate f .

Let Ue|g = {σ ∈ Ue | ∀n < length(σ) [σ(n) < g(〈e, n〉)]}. Define the function h

by h(e) is the least z such that Ue|g contains no strings of length z if e ∈ O and h(e) = 0

otherwise. We note h ≤T O⊕M so let j ≤T M dominate h. Then e ∈ O if and only if Ue|g

contains a string of length j(e). Hence O ≤T g ⊕ j so O ≤T M for a contradiction.

Corollary 4.2.3. Let X be a real such that OX is relatively hyperimmune-free, witnessed

by M . Then X 6≤T M .
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Proof. If X ≤T M then we could apply the above lemma relative to X and obtain a

contradiction.

Corollary 4.2.4. Let α be a real such that O(α) is not relatively hyperimmune-free. Then

O(α+1) is not relatively hyperimmune-free.

Proof. Suppose not, witnessed by M . By the previous Corollary, O(α) 6≤T M . But then M

witnesses that O(α) is relatively hyperimmune-free, for a contradiction.

Corollary 4.2.5. The statement “All but countably many reals are relatively hyperimmune-

free” fails to hold in Π1
1-CA.

Proof. We can use the previous Corollary to show by induction that O(n) is not relatively

hyperimmune-free for all n ∈ ω. We can then apply the proof of Corollary 3.3.4.

We will now show limit ordinal iterated hyperjumps are not relatively hyper-

immune-free. The proof is analogous to that of Lemma 4.2.2.

Lemma 4.2.6. Let o be a system of notations for a limit ordinal α such that o ≤T O(γ) for

some γ < α and for all β < α we have O(β) is not relatively hyperimmune-free. Then O(α)

is not relatively hyperimmune-free.

Proof. Suppose not, witnessed by M . We note that O(β) ≤T M for all β < α since otherwise

M would witness O(β) being relatively hyperimmune-free. Since γ < α, we have o ≤T M .

Let τX
e denote the leftmost path through UX

e for e /∈ OX . We define a function f .

Let n, l be such that o(n) = o(l) + 1 (if o(n) = 0 we use ∅ for O(o(l))). Let f(〈n, e,m〉) =

τO
(o(l))

e (m) if e /∈ O(o(n)) and f(〈n, e,m〉) = 0 otherwise. For n such that o(n) is a limit

ordinal, let f(〈n, e,m〉) = 0. Since f ≤T O(α) let g ≤T M dominate f .
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Let Un
e |g = {σ ∈ UO(o(n))

e | ∀l < length(σ) [σ(l) < g(〈n, e, l〉)]}. We next define the

function h. If o(n) is a limit ordinal then h(〈n, e〉) = 0. If n, l are such that o(n) = o(l) + 1

then h(〈n, e〉) is the least z such that U l
e|g contains no strings of length z if e ∈ O(o(n)) and

h(〈n, e〉) = 0 otherwise. Again, h ≤T M ⊕O(α) so let j ≤T M dominate h.

We wish to show O(α) ≤T g ⊕ j ⊕ o so that O(α) ≤T M for a contradiction. Let

β ≤ α be arbitrary. If o(n) is a limit ordinal then 〈n,m, e〉 ∈ O(β) if and only if e ∈ O(o(m)).

If o(n) = o(l) + 1 then 〈n, e〉 ∈ O(β) if and only if Un
e |g contains a string of length j(〈n, e〉).

In either case, finitely many queries to O(δ) for some δ < β are used. These queries can

then be answered by further use of this procedure. By the well-foundedness of the ordinals,

we can uniformly determine if any m ∈ O(α) by finitely many queries to j, g, o. Hence

O(α) ≤T g ⊕ j ⊕ o, as desired.

We can now apply induction as in section 3.3.

Theorem 4.2.7. Let λ be the least ordinal such that supβ<λ(βth admissible) = λ. Then

for all α < λ we have O(α) is not relatively hyperimmune-free.

Proof. Suppose not. Let β < λ be the least ordinal such that O(β) is relatively hyper-

immune-free. Let f be the function used in Theorem 3.3.6. Then β < f(β). By Corollary

4.2.4, β is a nonzero limit ordinal so choose γ < β such that β < f(γ). Then β < ωO
(γ)

1

so we can fix a system of notations, o, for β recursive in O(γ+1). Then by Lemma 4.2.6 we

have O(β) is not relatively hyperimmune-free, for a contradiction.
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Chapter 5

Conclusion

While they differ at low levels of complexity, the sets of reals which are random

relative to some continuous measure, generic relative to some perfect tree, and relatively

hyperimmune-free are remarkably similar. This raises the questions of what other sets of

relative reals follow this pattern and if there is a deeper explanation. Woodin has shown

that the co-countability of reals random relative to some continuous measure and reals

generic relative to some perfect tree can be proved equivalent above a base theory which

proves neither outright [22].

How much of ZFC is needed to prove all but countably many reals are relatively

hyperimmune-free is not yet known. There is also still considerable room left to explore

in determining which reals are 1-generic relative to some perfect tree. In particular, it is

not yet known if every real not 1-generic relative to any perfect tree is hyperarithmetic.

Finally, there are many properties related to relative recursive enumerability that may be

worth studying. Among these are the sets of reals which are relatively d.r.e. low, semi-low,
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semicreative, non-cappable, atomless, and maximal.
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