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Introduction

Bounded Turing degrees
In this talk we will work with the bounded Turing degrees.

Definition
A ≤bT B if there is a Turing reduction Φ and a computable
function f such that A(n) = ΦB�f (n)(n) for all n.

Weak truth-table degrees
The bounded Turing degrees are often called the weak
truth-table degrees (denoted ≤wtt).



Introduction (continued)

The Turing jump on the bounded Turing degrees

The Turing jump often works differently on the bounded
Turing degrees than on the Turing degrees.

For example, Shoenfield proved for every Σ2 set B there is a
A ≤T ∅′ such that A′ ≡T B.

However Csima, Downey, and Ng proved there is a Σ2 set
C >tt ∅′ such that for all D ≤T ∅′ we have D′ 6≡bT C.



Motivation

Finding a bounded jump

Can we find a “bounded” jump operator which corresponds to
the definition of the bounded Turing degrees?

We would want such an operator to interact with the bounded
Turing degrees in a manner analogous to the interaction of the
Turing jump with the Turing degrees.



Motivation (continued)

Desired properties

I Limited use of oracle

I Equivalent to similar operators

I Strictly increasing

I Order preserving

I Distinct from known operators



Definition

Bounded jump
We define the bounded jump.

Definition
Ab = {x | ∃ i < x[ϕi(x)↓ ∧ ΦA�ϕi(x)

x (x)↓]}.

We let Anb denote the n-th bounded jump.



Similar operators

A more general form
The bounded jump is equivalent to a more general form.

Definition
Ab0 = {〈e, i, j〉 | ϕi(j)↓ ∧ ΦA�ϕi(j)

e (j)↓}.

Theorem

1. Ab0 ≤1 Ab

2. Ab ≤tt Ab0

3. There exists A such that Ab 6≤1 Ab0



Similar operators (continued)

A simple form
A simplified form does not work as a jump operator.

Definition
Ai = {x | ΦA�x

x (x)↓}

Remark
Let A ≥bT ∅′. Then Ai ≤bT A.



Properties

Basic properties

1. ∅b ≡1 ∅′

2. A ≤1 Ab

3. Ab ≤1 A′ (since Ab is c.e.(A))



Properties (continued)

Strictly increasing

Theorem
Ab 6≤bT A

Order preserving

Theorem
A ≤bT B⇒ Ab0 ≤1 Bb0

Corollary

1. A ≤bT B⇒ Ab ≤tt Bb

2. ∅′ ≤tt Ab



Properties (continued)

Ab and A′

Proposition
Ab ≡T A⊕∅′

Corollary

1. If A′ 6≤T A⊕∅′ then A′ 6≤T Ab

2. If A ≥T ∅′ then Ab ≡T A



Properties (continued)

Ab and A⊕∅′

Since the bounded jump is strictly increasing, if A ≥T ∅′ then
Ab 6≡bT A⊕∅′

Theorem
Let A be 3-random. Then Ab 6≤bT A⊕∅′.

It follows that the class of A such that Ab ≡bT A⊕∅′ has
measure zero.



Properties (continued)

Strong jump inversion

Anderson proved that for every A ≥tt ∅′ there is a B such that
B⊕∅′ ≡tt B′ ≡tt A.

As a result, for every A ≥tt ∅b there is a B such that
B⊕∅b ≡tt Bb ≡tt A.

A similar analysis gives that for every A ≥bT ∅′ there is a B
such that B⊕∅b ≡bT Bb ≡bT A.



Main results

Ershov Hierarchy

The Turing jump characterizes the arithmetic hierarchy. We will
see that the bounded jump characterizes the Ershov hierarchy.

Definition
A is α-c.e. for α ≥ ω if there is a partial computable
ψ : ω× α→ {0, 1} such that for all n there is a γ such that
ψ(n, γ)↓ and for the least such γ we have A(n) = ψ(n, γ).

Definition
A is a tt-cylinder if for all B we have B ≤tt A⇒ B ≤1 A.



Main results (continued)

Ershov Hierarchy (continued)

Theorem (Folklore)
A ≤bT ∅′ ⇔ A is ω c.e.⇔ A ≤tt ∅′

Theorem
For n ≥ 2, we have A ≤bT ∅nb ⇔ A is ωn-c.e.⇔ A ≤1 ∅nb

Corollary
For n ≥ 2, we have that ∅nb is a tt-cylinder.



Main results (continued)

Ideas in proof

Lemma

1. If B ≤bT A and A is ωn-c.e. then B is ωn-c.e.
2. If A is ωn-c.e. then Ab is ωn+1-c.e.

For each of these we let ψ witness A is ωn-c.e. and build a
larger χ which level by level estimates the result based on the
values in ψ.

In 2. if our bound estimate changes, we drop a ωn level and
start over.



Main results (continued)

Ideas in proof (continued)

Lemma
If A is ω2-c.e. then A ≤1 ∅2b

We cannot bound in advance the amount of ∅b required to
answer all the Σ1 questions needed to determine if n ∈ A.

However, we can bound in advance the indices of computable
functions which bound the amount of ∅b used.

A is ωn-c.e. ⇒ A ≤1 ∅nb for n > 2 is proved by induction.



Main results (continued)

Shoenfield inversion
We noted earlier that Shoenfield inversion fails to hold for the
bounded Turing degrees with the Turing jump.

However, Shoenfield inversion does hold for the bounded
Turing degrees with the bounded jump.

Theorem
Given B such that ∅b ≤bT B ≤bT ∅2b there is a A ≤bT ∅b such that
Ab ≡bT B



Main results (continued)

Ideas in proof

Let ψ witness B is ω2-c.e. We build A to be ω-c.e.

Pick g by the Recursion Theorem so that its values are far apart.
g will witness B ≤1 Ab.

Choose markers xi
n to represent the least i such that

ψ(n, ω · i + j)↓ for some j.



Main results (continued)

Ideas in proof (continued)

Declare ΦA∪{xi
n}�xi

n
g(n) (g(n))↓ and vary As(xi

n) to match Bs(n).

If ψ(n, ω · ı̃ + j)↓ for a lower ı̃, then move to new marker xı̃
n.

Construction is computable, and marker locations bounded.
Use this to show Ab ≤bT B.



Conclusion

Further progress

We can determine if other theorems about the Turing jump
hold for the bounded jump.

For example, Sacks showed that for Σ2 sets B ≥T ∅′ there is a
c.e. set A such that A′ ≡T B.

Csima, Downey, and Ng proved Sacks jump inversion fails for
the bounded Turing degrees with the Turing jump.

Not yet known if Sacks jump inversion holds for the bounded
Turing degrees with the bounded jump.



Conclusion (continued)

Other open areas

Definition
A is bounded high if Ab ≥bT ∅2b. A is bounded low if
Ab ≤bT ∅b.

We can attempt to characterize which sets are bounded high or
bounded low. We can also look at other definitions using the
bounded jump.

Gerla developed jump operators for the truth-table and
bounded truth-table degrees. Not much work has been done
with these operators yet.


