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Introduction

Degree structures and automorphisms

A basic question of Computability Theory is the structure of the
Turing Degrees and other computational degrees.

One way we can study these structures is to examine their
automorphisms.

The automorphisms of the Turing degrees, many-one degrees,
and hyperdegrees have been studied extensively.



Introduction (continued)

Truth-table degree automorphisms

In comparison, the automorphisms of the truth-table degrees
remain relatively unexplored.

We show that every automorphism of the truth-table degrees is
fixed on some cone.

We also consider the possibility of further progress in studying
automorphisms of the truth-table degrees.



Definitions

Reals
We view reals as infinite binary strings.

Definition

A reduction Φ is a truth-table reduction if there is a computable
function f such that for all n, for every string σ of length f (n),
we have Φσ(n)↓.
A ≤tt B if there is a truth-table reduction Φ such that Φ(B) = A.

Sets of degrees
We let D, Dtt, Dm, and Dh denote the sets of Turing degrees,
truth-table degrees, many-one degrees, and hyperdegrees,
respectively.



Definitions (continued)

Definition

A bijection π : D→ D is an automorphism if for all Turing
degrees x, y we have:

x ≤T y⇔ π(x) ≤T π(y).

Automorphisms of other degree structures are defined
similarly.

Definition
A real G is n-generic if for every Σn set S of finite strings either
there is an l such that G|l ∈ S or there is an l such that for every
τ ⊇ G|l we have τ /∈ S.



Results

We prove the following results.

Theorem
Let X be a 2-generic real. Then X′ 6≤tt X⊕ 0′.

Theorem
Let X ≥tt 0′ be a real. Then there is a real Y such that
Y⊕ 0′ ≡tt Y′ ≡tt X.

Theorem
Let π : Dtt → Dtt be an automorphism. Then there is a degree b such
that for all x ≥T b we have π(x) = x.



Known results
Spectrum

To gain a better understanding of the automorphisms of the
truth-table degrees, we consider the automorphisms of other
degree structures.

From results known so far, it seems the degree structures form
a spectrum.

The stronger the reduction, the fewer the restrictions on the
automorphisms.

Hyperdegrees are rigid

There is no nontrivial automorphism of the hyperdegrees.



Known results (continued)

Many-one degrees

0 is the only m-degree fixed by every automorphism
(Odifreddi).

There are 22ω
many automorphisms of the m-degrees (Shore).

There is an automorphism of Dm which is not fixed on any cone
(Shore).

Combined with our main result, this provides a tangible
difference between the automorphisms of the tt-degrees and
the automorphisms of the m-degrees.



Known results (continued)

Turing degrees

Every automorphism of the Turing degrees is fixed on some
cone (Nerode and Shore).

Every automorphism of the Turing degrees is fixed on the cone
with base 0′′ (Slaman and Woodin).

Let g ∈ D contain a 5-generic real. Then {g} is an
automorphism base for D (Slaman and Woodin).

For all automorphisms π and ρ of D, if π(g) = ρ(g) then π = ρ.

The Turing jump is definable in D (Shore and Slaman).

π(x′) = (π(x))′.



Known results (continued)

Are the Turing degrees rigid?

The set of automorphisms of the Turing degrees is at most
countable (Slaman and Woodin).

The statement ”There is a nontrivial automorphism of the
Turing degrees” is absolute between well-founded models of
ZFC (Slaman and Woodin).

The Turing degrees are not rigid (Cooper).

The proof of this fact has not yet been verified by leading
experts.



Known results (conclusion)

Truth-table degrees

There are few known results about automorphisms of the
truth-table degrees.

For the structure of the truth-table degrees with jump,
(Dtt,≤tt, ′), every automorphism is fixed on the cone with base
0(4) (Kjos-Hanssen).



Main result

We prove that every automorphism of Dtt is fixed on some
cone.

Theorem
Let π : Dtt → Dtt be an automorphism. Then there is a degree b such
that for all x ≥tt b we have π(x) = x.



Towards proving the main result

Adapting Nerode and Shore

Nerode and Shore noted that to adapt to the truth-table degrees
their proof that every automorphism of D is fixed on some cone
required some form of jump inversion.

Mohrherr found that it sufficed to show strong jump inversion
for the truth-table degrees:

For all reals X ≥tt 0′ there is a real Y such that

Y⊕ 0′ ≡tt Y′ ≡tt X.



Jump inversions

Strong jump inversion holds for the Turing degrees.

Theorem (Friedberg)
Let X ≥T 0′ be a real. Then there is a real Y such that
Y⊕ 0′ ≡T Y′ ≡T X.

An analogue of the proof can be used to prove ordinary jump
inversion for the truth-table degrees.

Theorem (Mohrherr)
Let X ≥tt 0′ be a real. Then there is a real Y such that Y′ ≡tt X.



Jump inversions (continued)

Friedberg obtained strong jump inversion for the Turing
degrees by using the following lemma.

Lemma (Friedberg)
Let X be a 1-generic real. Then X′ ≤T X⊕ 0′.

To obtain strong jump inversion for the truth-table degrees, we
might hope to prove a similar lemma.

Somewhat unexpectedly, nearly the opposite situation holds.

Theorem
Let X be a 2-generic real. Then X′ 6≤tt X⊕ 0′.



X is 2-generic⇒ X′ 6≤tt X⊕ 0′

Idea for Proof

We wish to prove every 2-generic real X is such that
X′ 6≤tt X⊕ 0′.

A truth-table computation of X′ is bounded in its use of X

However, the following is dense:

The n required so that {e}X�n(e)↓ exceeds any fixed bound
computable in e.

We use this to get a proof by contradiction.



X is 2-generic⇒ X′ 6≤tt X⊕ 0′—Proof

Proof

Suppose not. Let Φ be a truth-table reduction with bound f
such that Φ(X⊕ 0′) = X′.

Without loss of generality, let f (n) be even for all n.

We define a set S of strings σ which witness a failure of
Φ(A⊕ 0′) = A′ for any A ⊃ σ.



X is 2-generic⇒ X′ 6≤tt X⊕ 0′—Proof (continued)

Proof (continued)

Let S = {σ ∈ 2<ω | ∃n[Φ(σ⊕0′)�f (n)(n) = 0 ∧ {n}σ(n)↓]}.

X does not meet S because Φ(X⊕ 0′) = X′.

S is Σ0
1(0′) so S is Σ0

2.

Since X is 2-generic, there is an l such that for every τ ⊇ X � l
we have τ /∈ S.



X is 2-generic⇒ X′ 6≤tt X⊕ 0′—Proof (continued)

Proof (continued)

Define {j(y)}σ(n) = 0 if σ( 1
2 [f (y)] + 1) = 0 and {j(y)}σ(n)↑

otherwise.

By the Recursion Theorem, let M be an infinite computable set
such that {j(m)} = {m} for all m ∈ M.



X is 2-generic⇒ X′ 6≤tt X⊕ 0′—Proof (continued)

Proof (continued)

For m ∈ M, if {m}σ(m) converges depends only on the value of
σ( 1

2 [f (m)] + 1).

But for σ ⊇ X � l the value of the jump is predicted based on
σ � 1

2 [f (m)].

By applying genericity again, we find an element of M which
can create a contradiction.



X is 2-generic⇒ X′ 6≤tt X⊕ 0′—Proof (continued)

Claim
∃v ∈ M such that 1

2 [f (v)] > l and X( 1
2 [f (v)] + 1) = 1.

Proof (claim)

Let
V = {σ ∈ 2<ω | ∃m ∈ M[ 1

2 [f (m)] > l ∧ σ( 1
2 [f (m)] + 1) = 1]}.

For any τ we have τˆ1j ∈ V for any large enough j.

By genericity, X � k ∈ V for some k. Then let v witness that
X � k ∈ V. (claim)



X is 2-generic⇒ X′ 6≤tt X⊕ 0′—Proof (continued)

Proof (from claim)

Let v be given by the claim.

Since v ∈ M and X( 1
2 [f (v)] + 1) = 1 we have

{v}X(v) = {j(v)}X(v) =↑.

Hence v /∈ X′ so Φ(X⊕0′)�f (v)(v) = 0.

Let τ = (X � 1
2 [f (v)])ˆ0.



X is 2-generic⇒ X′ 6≤tt X⊕ 0′—Proof (conclusion)

Proof (conclusion)

Since 1
2 [f (v)] > l we have τ ⊇ X � l so τ /∈ S.

We already have Φ(X⊕0′)�f (v)(v) = 0 so we must conclude
{v}τ(v)↑.

But v ∈ M and τ( 1
2 [f (v)] + 1) = 0 so {v}τ(v) = {j(v)}τ(v) = 0

for a contradiction. .

Remark
Kjos-Hanssen has observed that Mohrherr’s construction for 0′

gives a 1-generic real X such that X′ ≤tt X⊕ 0′. Hence this
result is sharp.



Towards proving strong jump inversion

Difficulties

The proof of the previous theorem highlights the difficulties in
proving strong jump inversion.

We must make many choices deciding the values for Y′ before
we can extend Y to ensure the choices are correct.



Towards proving strong jump inversion (continued)

Alternate approach

Our original proof solved this by using a “bushy” construction
similar to those developed by Kumabe and Lewis.

Kučera noted that using a PA approach would result in a
simpler proof.



PA reals

PA reals

PA is the set of (binary valued) diagonally noncomputable
reals.

PA = {f ∈ 2ω | ∀x[f (x) 6= {x}(x)]}.

PA can be used as a “universal” Π0
1 class, which can easily code

information.



PA reals—Definitions

Definition
Let f ∈ 2ω and let M ⊆ ω be an infinite set. Let 〈mi | i ∈ ω〉 be
an increasing enumeration of M. We let Restr(f , M) denote the
function g such that g(i) = f (mi).

If we view M as the set of coding locations, then Restr(f , M) is
the real coded into f .

Definition
Let σ ∈ 2<ω. We define Restr(σ, M) to be the string τ such that
τ(i) = σ(mi) for all i such that mi <length(σ).

Definition
Let B ⊆ 2ω. We define
Restr(B, M) = {g ∈ 2ω | ∃f ∈ B [g = Restr(f , M)]}.



PA reals—Properties

Theorem (Kučera and Slaman)
Let B ⊆ PA be a Π0

1 class. Then there is an infinite computable set M
such that if B 6= ∅ then Restr(B, M) = 2ω. Furthermore, we can
(uniformly) computably find an index for M from an index for B.

Application

This theorem allows us to shrink the Π0
1 class we are working in

As long as the resulting class is nonempty, it is still “thick”
enough to code with.



Tree notation

Trees

Let T ⊆ 2<ω be a tree. We let [T] denote the Π0
1 class of paths

through T.

We let T[σ] denote the part of T compatible with the root σ.

T[σ] = {τ ∈ T | τ ⊇ σ ∨ τ ⊆ σ}.

Indices

Let Wn denote the n-th c.e. set of strings.

An index of a Π0
1 tree T is an n such that T = 2<ω \Wn.

An index for a Π0
1 class [T] is an index for T.



Strong jump inversion—Proof

Theorem
Let X ≥tt 0′ be a real. Then there is a real Y such that
Y⊕ 0′ ≡tt Y′ ≡tt X.

Proof

We build Y in stages, using Π0
1 trees Ti for bookkeeping.

At each stage we have Yi+1 ⊇ Yi, Ti+1 ⊆ Ti, and Yi ∈ Ti.

We start with Y0 = 〈〉 and T0 =PA.



Strong jump inversion—Proof (continued)

Proof (continued)

At stage i we ask if there is a d such that for all strings σ ⊇ Yi of
length d either σ /∈ Ti or {i}σ(i)↓.

This is a Σ0
1 question which we use 0′ to answer.

Essentially, we are asking if removing from Ti the strings which
force i ∈ Y′ results in an empty tree.



Strong jump inversion—Proof (continued)

Proof (continued)

If the answer is yes, we let Ti+1 = Ti[Yi] and note i ∈ Y′ is
forced.

If the answer is no, we let Ti+1 = Ti[Yi] \ {σ ∈ 2<ω | {i}σ(i)↓}
and note i /∈ Y′ is forced.

In either case, Ti+1 is nonempty (by compactness and our
choice of Yi).



Strong jump inversion—Proof (continued)

Proof (continued)

Let M be the set given by the theorem of Kučera and Slaman for
T.

Let m be the least element of M.

Using 0′ we define Yi to be the leftmost string σ ∈ Ti+1 of
length m such that σ(m) = X(i) and

[
Ti+1[σ]

]
6= ∅.

Yi codes X(i) at spot m. This completes stage i of the
construction.



Strong jump inversion—Proof (continued)

Proof (continued)

X can follow the construction (since X ≥tt 0′).

We can determine if i ∈ Y′ from the i-th stage of the
construction. Hence Y′ ≤T X.

Similarly, given Y and 0′ we can follow the construction and
read X(i) from Y(m).

Hence Y⊕ 0′ ≡T Y′ ≡T X. It remains to bound these
computations.



Strong jump inversion—Proof (continued)

Proof (continued)

We define some computable functions. Let m be an index of a
Π0

1 tree T.

u(m, i) is an index for T ∩ {τ ∈ 2<ω | {i}τ(i)↑}.

q(m, σ) is an index for T[σ].

s(i) is the least element of the M corresponding to the tree with
index i (for the theorem of Kučera and Slaman).



Strong jump inversion—Proof (continued)

Proof (continued)

We define computable functions t and l to bound the indices of
Ti and the lengths of Yi

We start with t(0) = index of PA and l(0) = 0.

To find t(i + 1) and l(i + 1) we take the largest possible result
for any values used in the role of Y′ � i, X � i, and Tj, Yj for j ≤ i.

t(i + 1) = max
σ∈2≤l(i), e≤t(i)

(
max(q(e, σ), q(u(e, i), σ))

)

l(i + 1) = max
e≤t(i+1)

(s(e))



Strong jump inversion—Proof (continued)

Proof (continued)

We next find a computable function g such that stage i of the
construction requires at most 0′ � g(i).

Let h : 2<ω ×ω×ω → ω be a computable function such that
h(τ, n, i) ∈ 0′ iff there is a number d such that for all strings σ of
length d extending τ we have σ ∈ Wn or {i}σ(i)↓.

Let j : 2<ω ×ω → ω be a computable function such that
j(τ, n) ∈ 0′ iff there is a number d such that for all strings σ of
length d extending τ we have σ ∈ Wn.

g(i) = max
τ∈2≤l(i+1), m≤i, n≤t(i+1)

(
max(h(τ, n, m), j(τ, n))

)



Strong jump inversion—Proof (conclusion)

Proof (conclusion)

We now complete the proof.

To reach the n-th step of the construction requires X � n and
0′ � g(n).

Let f witness 0′ ≤tt X. Then to calculate Y′(n) requires
X � max(n, f (g(n))).

Similarly, to calculate X(n) requires Y � l(n + 1) and 0′ � g(n).

Therefore Y⊕ 0′ ≡tt Y′ ≡tt X.



Multiple strong jump inversion

Corollary
Let n ∈ ω and let X ≥tt 0(n) be a real. Then there is a real Y such
that Y⊕ 0(n) ≡tt Y(n) ≡tt X.

Proof

By induction. The base case is given by the theorem.

For the inductive case, assume the statement holds for n and let
X ≥tt 0(n+1).

By the theorem relative to 0(n) let Z ≥tt 0(n) be such that
Z⊕ 0(n+1) ≡tt Z′ ≡tt X.



Multiple strong jump inversion (continued)

Proof (continued)

By the inductive hypothesis for Z, let Y be such that
Y⊕ 0(n) ≡tt Y(n) ≡tt Z.

Then Y⊕ 0(n+1) ≥tt Z⊕ 0(n+1) ≥tt X ≥tt Z′ ≥tt Y(n+1).

Hence Y⊕ 0(n+1) ≡tt Y(n+1) ≡tt X, completing the induction.



Coding reals

Representing the natural numbers

We wish to use a finite set of truth-table degrees to code the
information in a real.

We create a set of parameters~p ∈ Dtt and degrees representing
natural numbers 〈Gn | n ∈ ω〉.

Each Gn+1 is the unique truth-table degree satisfying a set of
relations involving~p and Gn.

Hence~p and G1 determine 〈Gn | n ∈ ω〉.



Coding reals (continued)

Representing a real

To represent a real S we find a degree q such that for every
n ∈ ω we have that n ∈ S iff certain relations hold between Gn,
q, and~p.

We note that ≤tt is preserved under automorphisms.

So if π is an automorphism and q represents S for~p and
〈Gn | n ∈ ω〉, then π(q) still represents S for π(~p) and
〈π(Gn) | n ∈ ω〉.

We use two theorems of Mytilinaios and Slaman to set up this
coding system. Let (X) denote the truth-table degrees below X.



Coding reals (continued)
Theorem (Mytilinaios and Slaman)
Let B ≥tt 0′. Then there exist reals~p = 〈E1, E2, D1, D2, F1, F2〉 with
B ≤tt ~p ≤tt B′′ and 〈Gn | n ∈ ω〉 uniformly computable in B′′ such
that:

1. For any Gn1 , Gn2 , . . . Gnk and m 6= nj for all j < k we have
(Gn1 ⊕ . . .⊕Gnk) ∩ (Gm) = (B).

2. D1 6≥tt D2 and for any n ∈ ω we have D1 ⊕Gn ≥tt D2.
3. For n odd, (F1 ⊕Gn) ∩ (E1) = (Gn+1) and

For n even, (F2 ⊕Gn) ∩ (E2) = (Gn+1).

Theorem (Mytilinaios and Slaman)

Let B,~p, and 〈Gn | n ∈ ω〉 satisfy the conditions above.

Let S ⊆ ω. Then S is Σ0
2(~p)⇔ ∃Q[Q ≤tt ~p ∧ ∀n ∈ ω

[n ∈ S↔ ∃X[X ≤tt Gn ∧ X ≤tt Q ∧ D2 ≤tt X⊕D1]]].



Coding reals (continued)

Using coding

Given an automorphism π and a sufficiently high degree y we
can use these theorems to get π(y) ≤tt y′′.

We choose a real B such that B′′ ≡tt π(y).

Let~p be given by the first theorem. We have B ≤tt ~p ≤tt B′′.

B′′ is Σ0
2(~p) so we let q code B′′ for~p.



Coding reals (conclusion)

Using coding (continued)

Then π−1(q) codes B′′ for π−1(~p).

Hence by the second theorem B′′ is Σ0
2(π−1(~p)).

We have~p ≤tt B′′ ≡tt π(y). Applying π−1 yields π−1(~p) ≤tt y.

Thus B′′ is Σ0
2(y) so π(y) ≡tt B′′ ≤tt y′′.



Automorphisms fixed on a cone

Theorem
Let π : Dtt → Dtt be an automorphism. Then there is a degree b such
that for all x ≥tt b we have π(x) = x.

Strategy for proof

Let d be a sufficiently high degree and let x ≥tt d′′ ⊕ π(d′′).

By strong jump inversion relative to d, let y ≥tt d be such that
x ≡tt y′′ ≡tt y⊕ d′′.



Automorphisms fixed on a cone (continued)

Strategy for proof (continued)

As before, we have π(y) ≤tt y′′.

Hence π(x) ≡tt π(y⊕ d′′) ≡tt π(y)⊕ π(d′′) ≤tt y′′ ⊕ x ≤tt x.

So π(x) ≤tt x and we use symmetry to complete the proof.



Automorphisms fixed on a cone—Proof

Proof

Let d = π−1(0′′′) and e = π(0′′′).

Let b = d′′ ⊕ π(d′′)⊕ e′′ ⊕ π−1(e′′). Let x ≥tt b be arbitrary.

We use the fact that x ≥tt d′′ ⊕ π(d′′) to show π(x) ≤tt x.

By symmetry, x ≥tt e′′ ⊕ π−1(e′′) implies π−1(x) ≤tt x.

Hence x ≤tt π(x). Therefore, π(x) = x proving the theorem.



Automorphisms fixed on a cone—Proof (continued)

Proof (continued)

Since x ≥tt d′′, by strong jump inversion relative to d there is a
y ≥tt d such that x ≡tt y′′ ≡tt y⊕ d′′.

We note since y ≥tt d we have π(y) ≥tt π(d) = 0′′′.

Hence by jump inversion relative to 0′, let Z ≥tt 0′ be such that
Z′′ ≡tt π(y).



Automorphisms fixed on a cone—Proof (continued)

Proof (continued)

Let~p ≤tt Z′′ and 〈Gn | n ∈ ω〉 be given by the first coding
theorem with base Z.

We note Z′′ is Σ0
2(Z) and Z ≤tt ~p so Z′′ is Σ0

2(~p).

By the second coding theorem, let q ≤tt p code Z′′ for~p and
〈Gn | n ∈ ω〉.



Automorphisms fixed on a cone—Proof (continued)

Proof (continued)

Since ≤tt is preserved under automorphisms, π−1(q) codes Z′′

for π−1(~p) and 〈π−1(Gn) | n ∈ ω〉.

By the second coding theorem, Z′′ is Σ0
2(π−1(~p)).

Since~p ≤tt Z′′ ≡tt π(y) we have π−1(~p) ≤tt y.

Hence Z′′ is Σ0
2(y), so Z′′ ≤tt y′′.



Automorphisms fixed on a cone—Proof (conclusion)

Proof (conclusion)

Since y′′ ≡tt x and π(y) ≡tt Z′′ ≤tt y′′, we conclude π(y) ≤tt x.

Since x ≥tt b we have π(d′′) ≤tt x. Thus π(y)⊕ π(d′′) ≤tt x.

This implies y⊕ d′′ ≤tt π−1(x).

Since y⊕ d′′ ≡tt x we have x ≤tt π−1(x).

Therefore, π(x) ≤tt x, proving the theorem.



Remarks

Calculating the base of the cone

We note that if π(0′′′) = 0′′′ and π(0(5)) = 0(5) then the base of
the cone is 0(5).

In particular, for the structure of the truth-table degrees with
jump, (Dtt,≤tt, ′), the base of the cone is 0(5).

This is one jump weaker than Kjos-Hanssen obtained by
working with the structure (Dtt,≤tt, ′) directly.



More applications to automorphisms

More results

There are several related results on automorphisms of D which
can be adapted to automorphisms of Dtt.

For example:

Let b be the base of the cone where π = id. Let I be an ideal in
Dtt with b ∈ I.

Then the restriction π � I is an automorphism of I.

To see this, let x ∈ I. Then x⊕ b ∈ I and b ≤tt x⊕ b.

Hence π(x) ≤tt π(x⊕ b) = x⊕ b so π(x) ∈ I.

This can also be done with π−1 to complete the proof.



Conclusion

Further progress

Can we prove truth-table analogues of some of the results of
Slaman and Woodin on automorphisms of the Turing degrees?

Main obstacle is finding a way to code a countable antichain in
Dtt using a finite set of parameters.



Conclusion (continued)

Coding antichains

Let A = 〈An ∈ Dtt | n ∈ ω〉 be a countable antichain.

We wish to find a formula ψ in the language (Dtt,≤tt) and a
finite set of parameters~p such that:

x ∈ A⇔ ψ(~p, x).

The parameters~p must be arithmetic in A

Preferably,~p should be Σ0
n(A) for some low n.



Conclusion (continued)

Results of coding antichains

Results which seem to follow from coding countable antichains
in the truth-table degrees:

The statement “There is a nontrivial automorphism of the
truth-table degrees” is absolute between well-founded models
of ZFC.

It is a necessary step in applying the methods of Slaman and
Woodin to automorphisms of Dtt.



Conclusion (continued)

How to code antichains?

Slaman and Woodin use genericity to code countable
antichains in the Turing degrees.

The proof relies heavily on the fact that every Turing degree
contains a real which is computable in each of its infinite
subsets.

A corresponding fact is false for the truth-table degrees.



Conclusion (end)

Other open questions

Let X ≥tt 0′ be a Σ0
2 real. Is there a c.e. real Y such that Y′ ≡tt X?

What if we weaken the requirement that Y is c.e. to Y ≤tt 0′ or
to Y is ∆0

2 ?

Is ≤T definable in (Dtt,≤tt) ?


