
Machines that know their own name:
Applications of the Recursion Theorem

Bernard Anderson

Gordon State College

November 19, 2012



Introduction

Computability Theory

I Computability Theory (also called Recursion Theory) is a
branch of mathematical logic.

I We study sets of numbers, looking at their properties,
patterns, and things in common with other sets that share
these properties



Introduction

Computability Theory (continued)

I We also study their computational power, what other sets
of numbers to they compute (and which compute them)

I Finally we look at the sets as a single structure whose
shape is given by this computability relation

I Fundamental open question: Is this structure rigid, can we
preserve the shape if we move the sets around?



Introduction

Today’s talk
In this talk we will learn about one of the main theorems of
introductory Computability Theory, and some of its
consequences

But first, there is a story. . .



Introduction

Today’s talk
In this talk we will learn about one of the main theorems of
introductory Computability Theory, and some of its
consequences

But first, there is a story. . .



Computability

Definitions of computable

I Turing machines

I Abacus machines

I Recursive functions

I All definitions are equivalent (each implies the others)



Computability

Definitions of computable

I Turing machines

I Abacus machines

I Recursive functions

I All definitions are equivalent (each implies the others)



Computability

Church’s Thesis
I Our intuitive definition of Computable is correct.

I If we can describe an effective procedure to calculate a
function, then it is computable.

I This hypothesis has held for well over half a century of
research in mathematics and computer science.



Computability

Definition
We say a function is computable if it can be calculated by a
sufficiently powerful supercomputer using arbitrarily large
finite amounts of time and memory space.



Programs

Computer Programs

I We view computer programs as strings of symbols

I Many, like “alsdjfjpiel3fne!lneij;tgieja” don’t do anything.

I Others, like “Input x, Output x + 1” work as intended.



Programs

Definition
We say a program is total if for every input the program comes
to a halt and provides meaningful output.



Enumeration

Listing programs

I We want to find a way to list off all possible computer
programs.

I We let Pn denote the n-th program in our list.

I One example is. . .



Enumeration

One possible list

P1: a

P2: b

P3: aa

P4: c

P5: ab

P6: ba

P7: aaa
...

P9738928: Input x, Output x + 1
...



Enumeration

Other lists
I Clearly, there are better lists available.

I However, in Computability Theory, which list we use
doesn’t matter

I We only need to make sure the list obeys the following
properties:



Enumeration

Properties for lists

1. It must list every computable function.

2. It must be computable to find Pn given n.

3. It must be computable to find n given Pn.

We call such lists acceptable and assume we are working with
some fixed acceptable list.



Total lists

Question
Why not only list the total programs?

Answer
It is impossible for such a list to exist.



Total lists

Question
Why not only list the total programs?

Answer
It is impossible for such a list to exist.



Total lists

Proof

Suppose P1, P2, P3, . . . is an acceptable list of total programs.

We define a new program:

Φ(x) = Px(x) + 1

Φ is total so it must be on the list. Let Φ be Pn.

Then Φ(n) = Pn(n) + 1 = Φ(n) + 1 for a contradiction.

We conclude no such list exists.



Recursion Theorem

Main result
We now come to the main result of this talk

But first, back to our story. . .



Recursion Theorem

Theorem
Let f (x, y) be a computable function. Then there is a n such that
Pn(x) = f (x, n)

Examples

I Pn(x) = n (for any x)

I Pn(x) = x + n

I Pn(x) simultaneously runs all Pm(x) with m > n and
outputs the first calculation that halts



Recursion Theorem

Notes
I This holds for any acceptable ordering.

I There are infinitely many such n.

I They can be found effectively.



Recursion Theorem

Notes
I This holds for any acceptable ordering.

I There are infinitely many such n.

I They can be found effectively.



Recursion Theorem

Counterexample attempt

I We can ask, what goes wrong if we try to create a listing
where the Recursion Theorem doesn’t hold?

I The idea is to look at the output of each program and
assign it a spot on the list where it doesn’t satisfy the
theorem.

I This doesn’t work because some programs aren’t total, and
others are total but take arbitrarily long to run.

I As proved earlier, an acceptable list of only total functions
doesn’t exist.



Use in research

Using the Recursion Theorem

I We sometimes want to show a function with excessive
predictive power does not exist.

I It seems obvious that the predictions can’t all be correct,
but it is hard to find one that is wrong.

I The Recursion Theorem is often useful in finding
counterexamples in these cases.

I We will see two examples from my own research (highly
simplified).

I The theorem can also be used for several other purposes



Use in research

Using the Recursion Theorem

I We sometimes want to show a function with excessive
predictive power does not exist.

I It seems obvious that the predictions can’t all be correct,
but it is hard to find one that is wrong.

I The Recursion Theorem is often useful in finding
counterexamples in these cases.

I We will see two examples from my own research (highly
simplified).

I The theorem can also be used for several other purposes



Use in research

Definitions
I We let Pσ

n(x) be program n run with input x where the
program is allowed to use information from σ

I Think of σ as information on a flash drive plugged into our
computer.



Use in research

First example

I We want to show the program Φ and computable function
f don’t exist

I Φ has the property that it can predict Pσ
x (x) only looking at

the first f (x) bits of information in σ.

I It seems obvious they don’t exist, but hard to prove.

I We don’t know the value of f for the program we are
writing, until we finish writing it.



Use in research

Solution
I We use the Recursion Theorem.

I We define Pσ
n(x) to be zero if the f (n) + 1 piece of

information in σ is zero.

I Otherwise we have program Pσ
n(x) never halt.

I The behavior of Pσ
n depends entirely on bit f (n) + 1 of σ.

I Hence Φ cannot predict it by looking only at the first f (n)
bits of σ.



Use in research

Second example

I We are trying to show a binary function Γ does not exist.

I Γ is total, and has the property:

For all x, if Γ(x) = 1 then Px(x) halts (with output).

I To start our counterexample, we want to find a n such that
Γ(n) = 0 and Pn(n) halts.



Use in research

Solution
I Using the Recursion Theorem, we define:

Pn(x) =

{
Pn(n) + 1 x = n and Γ(n) = 1
0 otherwise

I If Γ(n) = 1 then Pn(n) = Pn(n) + 1 for a contradiction.

I Hence Γ(n) = 0. Note then Pn(n) = 0 and hence halts.



Proof

s-m-n Theorem
I We start to look at the proof of the Recursion Theorem. We

first consider related results.

I Suppose we have a given program Φ(x, y) with two inputs.
Fix some number m and define a program Γ(x) = Φ(x, m).

I All Γ does is run Φ with the second input chosen in
advance to be m.

I Given Φ and m the program Γ is easy to describe.



Proof

s-m-n Theorem (continued)

I The s-m-n Theorem says we can effectively find the name
of program Γ given m

I It holds because our listing of programs is acceptable, i.e.
we can find the name when given the program.

Theorem
Let f (x, y) be a computable function. Then there is a one-to-one
computable function g such that Pg(y)(x) = f (x, y).



Proof

Recursion Theorem
I The version of the Recursion Theorem that we used is

slightly different than the original version below.

I We will prove the version we used follows from the
original on the next slide.

Theorem (Kleene)
Let f be a computable function. Then there is a number n such that
Pn = Pf (n).



Proof

Proof of corollary

I Let f (x, y) be given. We wish to show there is a n such that
Pn(x) = f (x, n).

I By the s-m-n Theorem, let g be such that Pg(y) = f (x, y).

I By the Recursion Theorem, let n be such that Pn = Pg(n).

I Then Pn(x) = Pg(n)(x) = f (x, n).



Proof

Idea for main proof

I The proof of the Recursion Theorem is short, but
notoriously difficult to memorize.

I We create a very strange “diagonal” function, d, and use it
to define n.

I We then have a brief but intricate verification that n works.



Proof

Proof [3]

I Let f be computable. We want to find n such that
Pn = Pf (n).

I By the s-m-n Theorem we define d(x):

Pd(y)(x) = PPy(y)(x)

I Let v be such that Pv(x) = f (d(x)). Let n = d(v). Then:

Pn = Pd(v) = PPv(v) = Pf (d(v)) = Pf (n)



Proof

Remarks
I We note that we have an explicit computation to find n.

I It is not difficult to alter the proof to find infinitely many
such n.

I It can also be expanded to handle more variables, etc.



Conclusion

Further study

I There are a lot of other interesting results in introductory
Computability Theory.

I The field is still fairly new and expanding.

I The objects we study are relatively tangible.



Conclusion

References

1. B. A. Anderson. Automorphisms of the truth-table degrees
are fixed on a cone. J. Symbolic Logic, 74(2):679–688, 2009.

2. B. A. Anderson and B. F. Csima. A bounded jump for the
bounded Turing degrees. Notre Dame J. Formal Logic, To
appear.

3. R. I. Soare. Recursively Enumerable Sets and Degrees.
Springer-Verlag, 1987.



Conclusion

Thank you


