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Introduction

Computability Theory

I Computability Theory (also called Recursion Theory) is a
branch of mathematical logic.

I We study sets of numbers, looking at their properties,
patterns, and things in common with other sets that share
these properties.

I We also study their computational power, what other sets
of numbers they compute (and which compute them)



Introduction

Subsets of the natural numbers
In this talk, we will work with subsets of the natural numbers.

Earlier work

My work was based on earlier work done by Reimann and
Slaman on relatively random sets.

Random sets are similar to generic sets. Random sets are
unpredictable, generic sets are unpatterned.



Countable and uncountalbe sets

Definitions

A set is countable if we can list off its elements

For example, the natural numbers are countable: 1, 2, 3, ...

A set is uncountable if it is not countable.

The set of infinite binary strings is not countable.



Countable and uncountalbe sets

Proof

Suppose R1, R2, R3, . . . lists off all infinite binary strings.

Define the string R by R(n) = 1− Rn(n).

For example, if R1 = 101 . . ., R2 = 100 . . ., R3 = 110 . . . then
R = 011 . . .

R always disagrees with Rn at the n-th spot.



Countable and uncountalbe sets

Proof (continued)

Since R is an infinite binary string, it must be listed, so R = Rm
for some m.

But then R(m) = Rm(m) and R(m) = 1− Rm(m) for a
contradiction.

We conclude the set of infinite binary strings is uncountable.



Countable and uncountalbe sets

Countable sets are small

Countable sets are much, much smaller than uncountable sets.

Joining together a finite number of countable sets still gives a
countable set.

In fact, a countably infinite collection of countable sets is still
countable.

We demonstrate how to count such a collection in the following
diagram:



Countable and uncountable sets



Countable and uncountable sets



Countable and uncountable sets



Countable and uncountable sets



Sets as binary strings

Infinite binary strings

We will often identify subsets of N with infinite binary strings

If n ∈ A then we say A(n) = 1. If n /∈ A then we say A(n) = 0.

We use the notation A �� n to denote the elements of A less than
or equal to n.

For example, if 2, 3, and 5 are the elements of A �� 5, then the
string for A starts 01101 . . .
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Overview

In this talk we will look at how many sets of numbers
inherently have patterns,

and how many can appear to have no patterns when viewed in
the right context.

We start with another story ...



Binary strings as paths

Visual representation

We can also depict an infinite binary string (and hence a subset
of N) visually.

We draw a path through a tree, going left for 0 and right for 1.

For example, consider A = 01101 . . . (see next slide).



Binary Strings as paths

A =



Binary Strings as paths

A = 0



Binary Strings as paths

A = 0 1



Binary Strings as paths

A = 0 1 1



Binary Strings as paths

A = 0 1 1 0



Binary Strings as paths

A = 0 1 1 0 1 . . .



Computability

Computable Sets
We say a set is computable if a sufficiently powerful computer
can determine if any number is in the set, given arbitrarily
large finite amounts of time and memory space.

Definition of computable
Although the above definition is vague, there are several
precise definitions of a set being computable. These definitions
have been shown to be equivalent.



Computability

Church’s Thesis
I Church’s Thesis states that this intuitive definition of

Computable is correct.

I If we can describe an effective procedure to calculate a
function, then it is computable.

I This hypothesis has held for well over half a century of
research in mathematics and computer science.



Computable Enumerability

Computable Enumerability

We say a set A is computably enumerable (c.e.) if we can
computably (effectively) list the elements of the set.

This list may not be in order, so at any point in time we don’t
know if an unlisted number is not in the set or if it will be listed
later.
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Computable Enumerability
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Computable Enumerability

Example

We wait while elements of the c.e. set B are listed off.

347 ∈ B, 192 ∈ B, 13 ∈ B, 5882 ∈ B, . . .

We know 13 is in B. We don’t know if 12 is in B.

Perhaps if we wait a minute longer we will see 12 added to B.
Perhaps 12 isn’t in B and we could wait forever for it to appear.
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Definition of 1-Generic

Definition (Friedberg, 1957)

A set A is 1-generic if for every c.e. set of finite strings S there is
a number n such that either A �� n ∈ S or [A �� n] ∩ S = ∅.

Generic sets

Generic sets are typical, in the sense that they don’t belong to
any “small” set we can easily define.

If a set A has an easy to describe pattern (i.e. all even numbers
are in A, or no prime numbers are in A) then A is not 1-generic.
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Generic sets and the binary tree

Visual representation

We can represent generic sets visually on the binary tree (see
next 3 slides).

If A is 1-generic then for every c.e. set S, we see at some finite
initial segment that either A �� n ∈ S, or A �� n cannot be
extended to meet S.



A �� 2 ∈ S

A �� 2 meets S.



[A �� 1] ∩ S = ∅

A �� 1 cannot be extended to meet S.



Neither

Neither holds. If S is c.e., then A is not 1-generic.



For mathematicians only

Connection to Analysis

We can place a canonical topology on the Cantor Space to
interpret genericity in terms of analysis.

A comeager set is effective if we can computably list its
neighborhoods.

A set A ∈ 2N is 1-generic if it is in every effective comeager set.

A set A ∈ 2N is 1-random if it is in every effective measure one
set.



Building a generic set

Building a generic set

Building a set A which works for any given c.e. set of finite
strings S is easy.

Building an A which simultaneously works for all c.e. sets of
finite strings is not.

Since generic sets have no easy to describe patterns, the sets
themselves are hard to describe

To build a generic set, we need some more definitions.
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Relative computability

Oracle machines

Let A be a set, and suppose our computer can obtain
information about A as part of its computation process.

If this computer can calculate a set B then we say A can
compute B.

We denote this by A ≥T B.

Computing a generic set

We will define a set zero jump, ∅′, and show that it computes a
1-generic set.



Programs

Computer Programs

I We view computer programs as strings of symbols

I Many, like “alsdjfjpiel3fne!lneij;tgieja” don’t do anything.

I Others, like “Input x, Output x + 1” work as intended.



Programs

Definition
If a program P run with input x comes to a halt with
meaningful output, we say it converges and write P(x)↓.

Definition
We say a program is total if for every input the program comes
to a halt and provides meaningful output.



Enumeration

Listing programs

I We want to find a way to list off all possible computer
programs.

I We let Pn denote the n-th program in our list.

I One example is. . .



Enumeration

One possible list

P1: a

P2: b

P3: aa

P4: c

P5: ab

P6: ba

P7: aaa
...

P9738928: Input x, Output x + 1
...



Enumeration

Other lists

Clearly, there are better lists available.

However, in Computability Theory, which list we use doesn’t
matter.

Previous talk (aside)

Last year we saw that no matter how we list the programs,
there will always be a program that references itself.

For example program 537 would output 537 on any input.



The halting set

Zero jump

We define zero jump (also called the halting set) to be the set of
numbers n such that the nth program halts when run with
input n.

Formally, ∅′ = {n | Pn(n)↓}.



The halting set (continued)

Properties of zero jump

• A diagonalization argument can be used to show that ∅′ is
not computable.

• ∅′ can answer all Σ1 questions (all “Does there exist”
questions about c.e. sets).

This can be shown by writing a program that halts iff the
answer to the question is “Yes”.

Similarly, ∅′ can compute all c.e. sets.
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Building a generic set (continued)

Computing a generic set

∅′ can compute a 1-generic set.

Theorem (Friedberg, 1957)
There is a 1-generic set G ≤T ∅′.



∅′ computes a 1-generic set

Proof sketch(see slides 2-4 down)

We start with G as an empty string, G0 = 〈 〉.

We consider the c.e. sets of finite strings (S1, S2, S3, . . .) one at a
time.

At stage i, we will extend Gi−1 to a Gi that works for Si.



∅′ computes a 1-generic set

Proof sketch (continued)

Each time, we ask ∅′, “Can Gi−1 be extended to meet the next
c.e. set Si?”

If yes, we extend Gi−1 to a Gi ∈ Si.

If no, we do nothing, Gi = Gi−1, so we have [Gi] ∩ Si = ∅.



∅′ computes a 1-generic set
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∅′ computes a 1-generic set

Proof sketch (continued)

Each time, we ask ∅′, “Can Gi−1 be extended to meet the next
c.e. set Si?”

If yes, we extend Gi−1 to a Gi ∈ Si.

If no, we do nothing, Gi = Gi−1, so we have [Gi] ∩ Si = ∅.



∅′ computes a 1-generic set

Can G0 be extended to meet S1?



∅′ computes a 1-generic set

Yes. Extend G0 to G1 ∈ S1.



∅′ computes a 1-generic set

Can G1 be extended to meet S2?



∅′ computes a 1-generic set

No. Let G2 = G1 so [G2] ∩ S2 = ∅.



∅′ computes a 1-generic set

Can G2 be extended to meet S3?



∅′ computes a 1-generic set

Yes. Extend G2 to G3 ∈ S3.



Joins of sets

Definition

If A and B are strings, we let A⊕ B be the string obtained by
alternating elements from A and B.

For example, if A = 01101 . . . and B = 00000 . . . then
A⊕ B = 0 0 1 0 1 0 0 0 1 0 . . ..



Joins of sets (continued)

A⊕ 00000 . . .

For any set A, the set A⊕ 00000 . . . is not 1-generic (there is an
obvious pattern).

This is witnessed by the c.e. set S of finite strings (see diagram
next slide):

S = {σ | ∃n < length(σ)[n is even and σ(n) = 1]}.
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Joins of sets (continued)

S witnesses 01101 . . .⊕ 00000 . . . is not 1-generic.



Joins of sets (continued)

“Almost” generic sets

We’ve seen that even if G is 1-generic, G⊕ 00000... is not
1-generic.

In fact if C is any non-generic set (even a computable set), then
G⊕ C is not 1-generic.

Finally, G⊕G is not 1-generic.
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Generic relative to some perfect tree

A more general version of generic

Many of the sets in the previous examples were “essentially”
generic, but had a single pattern applied to them.

We can consider if there is a broader notion of genericity.

In particular, we can ask which sets seem generic from some
perspective, and which sets inherently lack any genericity?

We introduce some new definitions to consider this.



Generic relative to some perfect tree (continued)

Trees

A tree is a set of strings T closed under initial segments.

For example, if 1011 ∈ T then we must have 1 ∈ T, 10 ∈ T, and
101 ∈ T.

The full binary tree we have seen so far is the largest possible
tree.

We can make smaller trees by trimming off branches (see board
for examples).



Generic relative to some perfect tree (continued)

Paths

An infinite string A is a path through a tree T if for all n, we
have A �� n ∈ T.

Informally, we can draw the string without leaving the tree (see
board).

For example, every infinite string is a path through the full
binary tree.



Generic relative to some perfect tree (continued)

Perfect trees

We say a tree T is perfect if it has no isolated paths, i.e. every
node in the tree has two incomparable extensions (see diagram
next 2 slides).

Every path through a perfect tree has infinitely many places it
can branch off.

The full binary tree 2<N is perfect.



Generic relative to some perfect tree (continued)

Perfect trees

We say a tree T is perfect if it has no isolated paths, i.e. every
node in the tree has two incomparable extensions (see diagram
next 2 slides).

Every path through a perfect tree has infinitely many places it
can branch off.

The full binary tree 2<N is perfect.



Generic relative to some perfect tree (continued)

Example of a perfect tree (no isolated paths)



Generic relative to some perfect tree (continued)

Example of a non-perfect tree



Generic relative to some perfect tree (continued)

Definition (Slaman)

Let A be a set and T be a perfect tree. Then A is 1-generic
relative to T if A is a path through T and for every c.e. in T set
of finite strings S ⊆ T, there is a number n such that either
A �� n ∈ S or [A �� n] ∩ S = ∅.

A set A is generic relative to some perfect tree if there exists a
perfect tree T such that A is generic relative to T.



Generic relative to some perfect tree (continued)
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Generic relative to some perfect tree (continued)

Example

We saw earlier that even for a 1-generic G we have that
G⊕ 00000 . . . is not 1-generic.

However if we let
T = {σ ∈ 2<N | ∀n < length(σ) [n even → σ(n) = 0]}
Then G⊕ 00000 . . . is 1-generic relative to T (see diagram next 2
slides).

Hence G⊕ 00000 . . . is 1-generic relative to some perfect tree.
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Generic relative to some perfect tree (continued)

S witnesses G⊕ 00000 . . . is not 1-generic.



Generic relative to some perfect tree (continued)

G⊕ 00000 . . . is 1-generic relative to T.



Generic relative to some perfect tree (continued)

More examples

In the same way we can see that if G is 1-generic and C is
computable, then G⊕ C and G⊕G are 1-generic relative to
some perfect tree.

On the other hand any c.e. set (in fact any n-c.e. set), including
∅′, is not 1-generic relative to any perfect tree.



Notes on definition

Importance of c.e. in T

The requirement that A work for all sets S that are c.e. in T
(rather than just c.e.) is important.

It means that if we chose a more complicated T, it must satisfy
more complicated sets S.

This prevents us from making many sets A 1-generic relative to
some perfect tree just by choosing a highly complicated T.



Notes on definition (continued)

Importance of perfect tree

The requirement that T be a perfect tree is also important.

It prevents us from making many sets A 1-generic relative to
some perfect tree by just making A an isolated path on T (see
diagram next slide).



Notes on definition (continued)

Isolated path is generic relative to non-perfect T



First main result

Recall, the set of all subsets of N has cardinality of the
continuum.

We can ask, how many sets are 1-generic relative to some
perfect tree?

Theorem (Anderson)
Only countably many sets are not 1-generic relative to any perfect
tree



Definitions

2-generic

We say a finite set of strings S is c.e. (∅′) if a computer that can
access ∅′ can list the elements of S.

We say a set is 2-generic if for every c.e. (∅′) set of finite strings
S there is a number n such that either A �� n ∈ S or
[A �� n] ∩ S = ∅.

This is the definition of 1-generic except c.e. has been repalced
by c.e. (∅′).

This is a stronger notion of genericity. Every 2-generic set is
1-generic.



Definitions (continued)

n-generic

We can define n-generic and n-generic relative to some perfect
tree similarly for any number n.

The larger n is, the larger and more complicated the set of
patterns that must be avoided.



First main result (continued)

Our result still holds for stronger notions of genericity

Theorem (Anderson)
For every n, only countably many sets are not n-generic relative to
any perfect tree



Reverse Mathematics

For the rest of the talk, we look at how the previous result
applies to an area of math known as Reverse Mathematics.

But first, back to our story ...



Reverse mathematics (continued)

Introduction to Reverse Mathematics

For any theorem of mathematics, we can ask “What axioms are
necessary to prove the theorem?”

We can then classify the axiomatic strength of theorems.
Stronger theorems require stronger axioms to prove them.



Reverse mathematics (continued)

Reverse mathematics (continued)

There is a hierarchy of five axioms, each of which proves the
axioms below it.

Extensive work has shown that many theorems of classical
mathematics have the strength of one of these axioms (see
diagram next slide).



Hierarchy with examples

Π1
1-CA (i.e. Which computable trees in the Baire space N<N are

well founded)

ATR0 (i.e. Given ordinals α and β, either α ≤ β or β ≤ α.)

ACA0 (i.e. Existence of maximal ideals, Range of every
f : N→N exists.)

WKL0 (i.e. Existence of prime ideals, Cantor space is compact)

RCA0 (i.e. Most theorems dealing with finite objects)



Abbreviations

GRPTn and GRPT

Let GRPTn denote the statement “Only countably many sets are
not n-generic relative to any perfect tree.”

Let GRPT denote the statement “For all n, only countably many
sets are not n-generic relative to any perfect tree.”



Second main result

Our earlier theorems have unusually high axiomatic strength.

Theorem (Anderson)
Π1

1-CA fails to prove GRPT2.

Theorem (Anderson)
ZFC− and existence of finitely many iterations of the power set of
(N) fail to prove GRPT.

The later result is at an axiom strength far above Π1
1-CA; few

theorems outside of set theory are this strong.



Conclusion

Further study

I There are a lot of other interesting results in Computability
Theory.

I The field is still fairly new and expanding.

I The objects we study are relatively tangible.



Conclusion
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Conclusion

Thank you


