Section 5.2

Ring Homomorphisms

RING HOMOMORPHISM

5.2.1 Definition. Let *R* and *S* be commutative rings. A function $\phi : R \rightarrow S$ is called a <u>ring homomorphism</u> if

(i) $\phi(a+b) = \phi(a) + \phi(b)$, for all $a, b \in R$;

(ii) $\phi(ab) = \phi(a)\phi(b)$, for all $a, b \in R$; and

(iii) $\phi(1) = 1$.

A ring homomorphism that is one-to-one and onto is called a <u>*ring isomorphism*</u>. If there is a ring isomorphism from *R* onto *S*, we say that *R* is <u>*isomorphic*</u> to *S*, and write $R \cong S$.

A ring isomorphism from the commutative R onto itself is called and <u>*automorphism*</u> of R.

INVERSES AND COMPOSITION OF RING ISOMORPHISMS

5.2.2 Proposition.

(a) The inverse of a ring isomorphism is a ring isomorphism.

(b) The composite of two ring isomorhisms is a ring isomorphism.

EXAMPLES OF HOMOMORPHISMS

- Natural Projection. The mapping $\pi : \mathbb{Z} \to \mathbb{Z}_n$ given by $\pi(x) = [x]_n$, for all $x \in \mathbb{Z}$, is a ring homomorphism that is onto but not one-to-one.
- **Natural Inclusion.** Let *R* be a commutative ring, and define $\iota : R \to R[x]$ by $\iota(a) = a$, for all $a \in R$. That is, $\iota(a)$ is the constant polynomial *a*. This is a ring homomorphism that is one-to-one but not onto.

EVALUATION MAPPING

Let *F* be a subfield of the field *E*. For any element $u \in E$, we can define a function $\phi_u : F[x] \to E$ by letting $\phi_u(f(x)) = f(u)$, for each $f(x) \in F[x]$. Then the requirements for a ring homomorphism are satisfied. Since the polynomials in F[x] are evaluated at *u*, the homomorphism ϕ_u is called an *evaluation mapping*.

BASIC PROPERTIES OF RING HOMOMORPHISMS

5.2.3 Proposition. Let $\phi : R \to S$ be a ring homomorphism. Then

- (a) $\phi(0) = 0;$
- (b) $\phi(-a) = -\phi(a)$ for all $a \in R$;
- (c) $\phi(R)$ is a subring of *S*.

KERNEL OF A RING HOMOMORPHISM

<u>5.2.4 Definition</u>. Let $\phi : R \to S$ be a ring homomorphism. The set

 $\{a\in R\mid \phi(a)=0\}$

is called the <u>kernel</u> of ϕ , denoted by ker(ϕ).

PROPERTIES OF THE KERNEL

<u>5.2.5 Proposition</u>. Let $\phi : R \to S$ be a ring homomorphism.

(a) If $a, b \in \text{ker}(\phi)$ and $r \in R$, then a + b, a - b, and ra belong to $\text{ker}(\phi)$.

(b) The homomorphism ϕ is an isomorphism if and only if ker(ϕ) = {0} and $\phi(R) = S$.

FUNDAMENTAL HOMOMORPHISM THEOREM FOR RINGS

<u>5.2.6 Theorem</u>. Let $\phi : R \to S$ be a ring homomorphism. Then $R/\ker(\phi) \cong \phi(R)$.

GENERALIZED SETTING FOR THE EVALUATION MAPPING

5.2.7 Proposition. Let *R* and *S* be commutative rings, let $\theta : R \to S$ be a ring homomorphism, and let *s* be any element of *S*. Then there exists a unique ring homomorphism $\hat{\theta}_s : R[x] \to S$ such that $\hat{\theta}_s(r) = \theta(r)$ for all $r \in R$, and $\hat{\theta}_s(x) = s$.

ROOTS OF POLYNOMIALS

Let *R* be a subring of the ring *S*, and let $\theta : R \to S$ be the inclusion mapping. If $s \in S$, then the ring homomorphism $\hat{\theta}_s : R[x] \to S$ defined by Proposition 5.2.7 should be thought of as an evaluation mapping, since $\hat{\theta}_s(f(x)) =$ f(s), for any polynomial $f(x) \in R[x]$. If f(s) = 0, then we say that *s* is a **root** of the polynomial f(x).

COMPONENT-WISE ADDITION AND MULTIPLICATION

5.2.8 Proposition. Let $R_1, R_2, ..., R_n$ be commutative rings. The set of *n*-tuples $(a_1, a_2, ..., a_n)$ such that $a_i \in R_i$ for each *i* is a commutative ring under the following addition and multiplication:

 $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$

 $(a_1,a_2,\ldots,a_n)\cdot(b_1,b_2,\ldots,b_n)=(a_1b_1,a_2b_2,\ldots,a_nb_n)$

For *n*-tuples (a_1, a_2, \dots, a_n) and (b_1, b_2, \dots, b_n) .

DIRECT SUM

5.2.9 Definition: Let $R_1, R_2, ..., R_n$ be commutative rings. The set of *n*-tuples $(a_1, a_2, ..., a_n)$ such that $a_i \in R_i$ for each *i*, under the operations of component-wise addition and multiplication is called the *direct sum* of the commutative rings $R_1, R_2, ..., R_n$, and is denoted by

 $R_1 \oplus R_2 \oplus \cdots \oplus R_n$.

CHARACTERISTIC OF A RING

5.2.10 Definition. Let *R* be a commutative ring. The smallest positive integer *n* such that $n \cdot 1 = 0$ is called the *characteristic* of *R*, denoted by char(*R*).

If no such positive integer exists, then *R* is said to have *characteristic zero*.

INTEGRAL DOMAINS AND CHARACTERISTIC

<u>5.2.11 Proposition</u>. An integral domain has characteristic 0 or *p*, for some prime number *p*.