

Integers Modulo *n*

SET OF INTEGERS MODULO *n*

1.4.1 Definition. Let a and $n > 0$ be integers. The set of all integers which have the same remainder as a when divided by n is called the *congruence class of* a *modulo n*, and is denoted by $[a]_n$, where

 $[a]_n = \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}$

The collection of all congruence classes modulo n is called the **set of integers modulo** n , and is denoted by \mathbb{Z}_n .

An element of $[a]_n$ is called a *representative* of the *congruence class*.

ADDITION AN MULTIPLICATION OF CONGRUENCE CLASSES

1.4.2 Proposition. Let n be a positive integer, and let a , b be any integers. Then the addition and multiplication of congruence classes are well‐defined:

 $[a]_n + [b]_n = [a + b]_n, \quad [a]_n \cdot [b_n] = [ab]_n$

ADDITIVE INVERSE

If $[a]_n, [b]_n \in \mathbb{Z}_n$ and $[a]_n + [b]_n = [0]_n$, then $[b]_n$ is called the *additive inverse* of $[a]_n$.

ARITHMETIC WITH CONGRUENCES

For any elements $[a]_n$, $[b]_n$, $[c]_n$ in \mathbb{Z}_n , the following laws hold.

A DIVISOR OF ZERO

1.4.3 Definition. If $[a]_n$ belongs to \mathbb{Z}_n , and $[a]_n \cdot [b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a *divisor of zero*.

MULTIPLICATIVE INVERSES

1.4.4 Definition. If $[a]_n$ belongs to \mathbb{Z}_n , and $[a]_n \cdot [b]_n = [1]_n$, then $[b]_n$ is called a *multiplicative inverse* of $[a]_n$ and is denoted by $[a]_n^{-1}$.

In this case, we say that $[a]_n$ is an *invertible* element of \mathbb{Z}_n , or a is a **<u>unit</u>** of \mathbb{Z}_n .

DIVISORS OF ZERO AND MULTIPLICATIVE INVERSES

- **1.4.5 Proposition.** Let n be a positive integer.
- (a) The congruence class $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if $gcd(a, n) = 1.$
- (b) Any nonzero element of \mathbb{Z}_n either has a multiplicative inverse or is a divisor of zero.

A COROLLARY

1.4.6 Corollary. The following conditions on the modulus $n > 0$ are equivalent.

- (1) The number n is prime.
- (2) \mathbb{Z}_n has no divisors of zero except $[0]_n$.
- (3) Every nonzero element of \mathbb{Z}_n has a multiplicative inverse.

EULER'S ࣐**‐FUNCTION**

1.4.7 Definition. Let n be a positive integer. The number of positive integers less than or equal to n which are relatively prime top n will be denoted by $\varphi(n)$. This function is called *Euler's* φ -*function*, or the *totient function*.

A FORMULA FOR THE EULER *Q*-FUNCTION

1.4.8 Proposition. If the prime factorization of *n* is $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $\alpha_i > 0$ for $1 \leq i \leq k$, then

$$
\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).
$$

THE SET OF UNITS

1.4.9 Definition. The set of units of \mathbb{Z}_n , the congruence classes [a] such that $gcd(a, n) =$ 1, will be denoted by \mathbb{Z}_n^{\times} .

1.4.10 Proposition. The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

EULER'S THEOREM

1.4.11 Theorem (Euler). If $gcd(a, n) = 1$, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

FERMAT'S LITTLE THEOREM

The following corollary of Euler's Theorem is known as "Fermat's Little Theorem."

1.4.12 Corollary (Fermat). If p is a prime number, then for any integer a we have $a^p \equiv a \pmod{p}$.