

Integers Modulo n

SET OF INTEGERS MODULO n

<u>1.4.1 Definition</u>. Let *a* and n > 0 be integers. The set of all integers which have the same remainder as *a* when divided by *n* is called the *congruence class of a modulo n*, and is denoted by $[a]_n$, where

 $[a]_n = \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}$

The collection of all congruence classes modulo n is called the <u>set of integers modulo</u> n, and is denoted by \mathbb{Z}_n .

An element of $[a]_n$ is called a <u>representative of the</u> <u>congruence class</u>.

ADDITION AN MULTIPLICATION OF CONGRUENCE CLASSES

<u>1.4.2 Proposition</u>. Let n be a positive integer, and let a, b be any integers. Then the addition and multiplication of congruence classes are well-defined:

 $[a]_n + [b]_n = [a+b]_n, \qquad [a]_n \cdot [b_n] = [ab]_n$

ADDITIVE INVERSE

If $[a]_n, [b]_n \in \mathbb{Z}_n$ and $[a]_n + [b]_n = [0]_n$, then $[b]_n$ is called the <u>additive inverse</u> of $[a]_n$.

ARITHMETIC WITH CONGRUENCES

For any elements $[a]_n$, $[b]_n$, $[c]_n$ in \mathbb{Z}_n , the following laws hold.

Associativity	$([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)$ $([a]_n \cdot [b]_n) \cdot [c]_n = [a]_n \cdot ([b]_n \cdot [c]_n)$
Commutativity	$ [a]_n + [b]_n = [b]_n + [a]_n [a]_n \cdot [b]_n = [b]_n \cdot [a]_n $
Distributivity	$[a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot [b]_n + [a]_n \cdot [c]_n$
Identities	$ [a]_n + [0]_n = [a]_n [a]_n \cdot [1]_n = [a]_n $
Additive Inverses	$[a]_n + [-a]_n = [0]_n$

A DIVISOR OF ZERO

<u>1.4.3 Definition</u>. If $[a]_n$ belongs to \mathbb{Z}_n , and $[a]_n \cdot [b]_n = [0]_n$ for some nonzero congruence class $[b]_n$, then $[a]_n$ is called a *<u>divisor of zero</u>*.

MULTIPLICATIVE INVERSES

1.4.4 Definition. If $[a]_n$ belongs to \mathbb{Z}_n , and $[a]_n \cdot [b]_n = [1]_n$, then $[b]_n$ is called a *multiplicative inverse* of $[a]_n$ and is denoted by $[a]_n^{-1}$.

In this case, we say that $[a]_n$ is an <u>invertible</u> element of \mathbb{Z}_n , or a is a <u>unit</u> of \mathbb{Z}_n .

DIVISORS OF ZERO AND MULTIPLICATIVE INVERSES

- **<u>1.4.5 Proposition</u>**. Let *n* be a positive integer.
- (a) The congruence class $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if gcd(a, n) = 1.
- (b) Any nonzero element of \mathbb{Z}_n either has a multiplicative inverse or is a divisor of zero.

A COROLLARY

<u>1.4.6 Corollary</u>. The following conditions on the modulus n > 0 are equivalent.

- (1) The number n is prime.
- (2) \mathbb{Z}_n has no divisors of zero except $[0]_n$.
- (3) Every nonzero element of \mathbb{Z}_n has a multiplicative inverse.

EULER'S φ -FUNCTION

<u>1.4.7 Definition</u>. Let *n* be a positive integer. The number of positive integers less than or equal to *n* which are relatively prime top *n* will be denoted by $\varphi(n)$. This function is called *Euler's \varphi-function*, or the *totient function*.

A FORMULA FOR THE EULER φ -FUNCTION

<u>1.4.8 Proposition</u>. If the prime factorization of *n* is $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where $\alpha_i > 0$ for $1 \le i \le k$, then

$$\varphi(n) = n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\cdots\left(1-\frac{1}{p_k}\right).$$

THE SET OF UNITS

<u>1.4.9 Definition</u>. The set of units of \mathbb{Z}_n , the congruence classes [a] such that gcd(a, n) = 1, will be denoted by \mathbb{Z}_n^{\times} .

<u>1.4.10 Proposition</u>. The set \mathbb{Z}_n^{\times} of units of \mathbb{Z}_n is closed under multiplication.

EULER'S THEOREM

<u>1.4.11 Theorem (Euler)</u>. If gcd(a, n) = 1, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

FERMAT'S LITTLE THEOREM

The following corollary of Euler's Theorem is known as "Fermat's Little Theorem."

1.4.12 Corollary (Fermat). If *p* is a prime number, then for any integer *a* we have $a^p \equiv a \pmod{p}$.