Section 9.2

EULER'S METHOD

One of the simplest techniques for approximating solutions of differential equations is Euler's Method, which is also known as the method of tangent lines.

PROCEDURE FOR EULER'S METHOD

1. Given $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$, find the slope of the tangent line at $\left(x_{0}, y_{0}\right)$. The slope is
$y^{\prime}\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right)$. We denote this slope by y_{0}^{\prime}.
2. Find a point $\left(x_{1}, y_{1}\right)=\left(x_{0}+h, y_{1}\right)$ on the tangent line by the formula $y_{1}=y_{0}+h y_{0}^{\prime}$. The variable h represents the step size which is "reasonably small."

PROCEDURE (CONCLUDED)

4. By continuing in the above manner, we are able to draw an approximate solution curve.

NOTE: In general,

$$
y_{n+1}=y_{n}+h y_{n}^{\prime}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

where $x_{n}=x_{0}+n h$.
3. Using the same value for h, we find the slope y_{1}^{\prime} at $\left(x_{1}, y_{1}\right)$. Find $\left(x_{2}, y_{2}\right)$ by $x_{2}=x_{1}+h$ and $y_{2}=y_{1}+h y_{1}^{\prime}$.

ERROR

Absolute Error: |true value - approximation|

$\frac{\text { Relative Error: }}{}$ \|true value-approximation \mid	
\mid Percentage value \mid	$=\frac{\text { absolute error }}{\mid \text { true value } \mid}$

$\frac{\mid \text { true value-approximation } \mid}{\mid \text { true value } \mid} \times 100$	$=\frac{\text { absolute error }}{\mid \text { true value } \mid} \times 100$
	$=$ (relative error) $\times 100$

IMPROVED EULER'S METHOD

This method is the same as Euler's method except that it uses a more accurate approximations. It uses the improved Euler's formula, or Heun's formula.

$$
y_{n+1}=y_{n}+h \frac{f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{*}\right)}{2}
$$

where $y_{n+1}^{*}=y_{n}+h f\left(x_{n}, y_{n}\right)$.

