

TRANSFORM OF A DERIVATIVE

<u>Theorem</u>: If f(t), f'(t), ..., $f^{(n-1)}(t)$ are continuous on $[0, \infty)$ and are of exponential order and if $f^{(n)}(t)$ is piecewise continuous on $[0, \infty)$, then

 $\mathcal{L}\left\{f^{(n)}(t)\right\} \\ = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0),$

where $F(s) = \mathcal{L}{f(t)}$.

THE CONVOLUTION

If the functions f and g are piecewise continuous on $[0, \infty)$, then the <u>convolution</u> of f and g, denoted by f * g, is given by the integral.

$$f * g = \int_0^t f(\tau)g(t-\tau)d\tau$$

Exercise 29 will show that f * g = g * f.

THE CONVOLUTION THEOREM

<u>Theorem</u>: Let f(t) and g(t) be piecewise continuous on $[0, \infty)$ and of exponential order, then

 $\mathcal{L}\{f\ast g\}=\mathcal{L}\{f(t)\}\,\mathcal{L}\{g(t)\}=F(s)G(s).$

NOTE: If g(t) = 1 and $G(s) = \frac{1}{s}$, then the convolution theorem gives

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}.$$

INVERSE OF THE CONVOLUTION THEOREM

$$\mathcal{L}^{-1}\{F(s)G(s)\} = f * g$$

TRANSFORM OF A PERIODIC FUNCTION

Theorem: Let f(t) be piecewise continuous on $[0, \infty)$ and of exponential order. If f(t) is periodic with period *T*, then

$$\mathcal{L}{f(t)} = \frac{1}{1-e^{-sT}} \int_0^T e^{-st} f(t) dt.$$