

INTEGRAL TRANSFORM

A definite integral of the form $\int_{a}^{b} K(s,t)f(t)dt$ transforms a function f(t) into a function of s. This is called an <u>integral transform</u>.

We are particular interested in this transform where the interval of integration is $[0, \infty)$. That is, if f(t) is defined for $t \ge 0$, then the improper integral is defined by means of a limit.

$$\int_{0}^{\infty} K(s,t)f(t)dt = \lim_{b \to \infty} \int_{0}^{b} K(s,t)f(t)dt$$

If the limit exists, the integral converges. Otherwise, it diverges.

LAPLACE TRANSFORM

Definition: Let f(t) be a function defined for $t \ge 0$. Then the integral

$$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) dt$$

is said to be a **Laplace Transform** of *f* provided the integral converges.

<u>NOTE</u>: We use the corresponding uppercase letter to denote the Laplace transform; *e.g.*,

 $\mathcal{L}\big\{f(t)\big\}=F(s).$

LINEARITY OF THE LAPLACE TRANSFORM

The Laplace transform is a <u>linear transform</u>, or <u>linear operator</u>, since

 $\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{L}\{f(t)\} + \beta \mathcal{L}\{g(t)\}$ $= \alpha F(s) + \beta G(s)$

EXPONENTIAL ORDER

Definition: A function *f* is said to be of exponential order if there exist numbers c > 0, M > 0, and T > 0 such that $|f(t)| \le Me^{ct}$ for t > T.

<u>NOTE</u>: This just says that the graph of f(t) does not grow faster than the exponential function Me^{ct} .

SUFFICIENT CONDITIONS FOR EXISTENCE OF LAPALCE TRANSFORM

Let f(t) be piecewise continuous on the interval $[0, \infty)$ and of exponential order for t > T; then $\mathcal{L}{f(t)}$ exists for s > c.

<u>NOTE</u>: These conditions are <u>not</u> necessary for the existence of a Laplace transform. The function $f(t) = t^{-1/2}$ is not piecewise continuous on $[0, \infty)$, but its Laplace transform exists.

LAPLACE TRANSFORMS OF SOME BASIC FUNCTIONS
1. $\mathcal{L}\{1\} = \frac{1}{s}$
2. $\mathcal{L}{t^n} = \frac{n!}{s^{n+1}}, n = 1, 2, 3, \dots$
3. $\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$
4. $\mathcal{L}(t^n e^{at}) = \frac{n!}{(s-a)^{n+1}}, n = 1, 2, 3, \dots$
5. $\mathcal{L}{\sin kt} = \frac{k}{s^2 + k^2}$
6. $\mathcal{L}\{\cos kt\} = \frac{s^2}{s^2 + k^2}$