

ORDINARY AND SINGULAR POINTS

Definition: Consider a homogeneous second order differential equation in standard form

$$y'' + P(x)y' + Q(x)y = 0$$

A point x_0 is said to be an <u>ordinary point</u> of the differential equation if both P(x) and Q(x) are analytic at x_0 . A point that is not an ordinary point is said to be a <u>singular point</u> of the equation.

<u>RECALL</u>: A function is analytic at the point x_0 if it can be represented by a power series in $(x - x_0)$ with R > 0.

ORDINARY AND SINGULAR POINTS OF DEs WITH POLYNOMIAL COEFFICIENTS

Given the homogeneous second order equation

 $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$

Where $a_2(x)$, $a_1(x)$, and $a_0(x)$ are polynomials with *no common factors*, a point $x = x_0$ is

(i) an ordinary point if $a_2(x_0) \neq 0$ or

(ii) a singular point i $a_2(x_0) = 0$.

EXISTENCE OF A POWER SERIES SOLUTION

Theorem: If $x = x_0$ is an ordinary point of the differential equation $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$, we can always find two linearly independent solutions in the form of power series centered at x_0 :

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

A series solution converges at least for $|x - x_0| < R$, where *R* is the distance from x_0 to the closest singular point (real or complex).

COMMENTS

- 1. For the sake of simplicity, we assume an ordinary point is always located at x = 0, since, if not, the substitution $t = x x_0$ translates the value $x = x_0$ to t = 0.
- 2. The distance from the ordinary point x = 0to a complex singular point x = a + bi is the <u>modulus</u> (<u>magnitude</u>) of the complex number. The modulus, |x|, of x = a + bi is defined to be

$$|x| = \sqrt{a^2 + b^2}$$

NONPOLYNOMIAL COEFFICIENTS

To deal with homogeneous second order equations with nonpolynomial coefficients, we expand the coefficients as power series centered at the ordinary point x = 0.