

REVIEW OF POWER SERIES

- 1. An infinite series $P(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ is called a <u>power series</u> in (x-a) or a <u>power</u> <u>centered at *a*</u>.
- 2. P(x) is <u>convergent</u> at a point x = c if $P(c) < \infty$. If $P(c) = \pm \infty$, the series <u>diverges</u> at *c*.
- The set of all numbers for which a series converges is called its <u>interval of</u> <u>convergence</u>. One-half the length of this interval is its <u>radius</u> (*R*) <u>of convergence</u>.

POWER SERIES (CONTINUED)

- 4. Exactly <u>one</u> of the following is true of a power series.
 - (a) the series converges only at center a; R = 0.
 - (b) the series converges for all x in |x a| < R, and diverges for all x in |x - a| > R, R > 0.
 - (c) the series converges for all x; $R = \infty$.
- 5. A series may or may not converge at an endpoint of its interval of convergence.

POWER SERIES (CONTINUED)

- 7. Power series can be combined through the operations of addition, subtractions, multiplication, and division.
- 8. If P(x) has a radius of convergence R > 0, then it is continuous and can be differentiated or integrated term by term on (a R, a + R). However, the resulting series may or may not be convergent at an endpoint of (a R, a + R).

POWER SERIES (CONCLUDED)

A function *f* is <u>analytic at a point *a*</u> if it can be represented by a power series in (*x* - *a*) with *R* > 0.

POWER SERIES SOLUTION TO A DIFFERENTIAL EQUATION

To find a power series solution to a differential equation:

- 1. Assume a series exists in the form $\sum_{n=0}^{\infty} c_n (x-a)^n$
- 2. Take derivatives and substitute the series into the differential equation.
- 3. Solve a recurrence relation for the constants, c_n .
- 4. Write the power series solution.