Section 6.2

Review of Power Series; Power Series Solutions

REVIEW OF POWER SERIES

1. An infinite series $P(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is called a power series in $(x-a)$ or a power centered at a.
2. $P(x)$ is convergent at a point $x=c$ if $P(c)<\infty$. If $P(c)= \pm \infty$, the series diverges at c.
3. The set of all numbers for which a series converges is called its interval of convergence. One-half the length of this interval is its radius (R) of convergence.

POWER SERIES (CONTINUED)

4. Exactly one of the following is true of a power series.
(a) the series converges only at center a; $R=0$.
(b) the series converges for all x in $|x-a|<R$, and diverges for all x in $|x-a|>R, R>0$.
(c) the series converges for all $x ; R=\infty$.
5. A series may or may not converge at an endpoint of its interval of convergence.

POWER SERIES (CONTINUED)

6. The ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right||x-a|=L
$$

can be used to determine the interval of convergence. The series converges absolutely for all x for which $L<1$. The radius of convergence is

$$
R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|
$$

if the limit exists.

POWER SERIES (CONTINUED)

7. Power series can be combined through the operations of addition, subtractions, multiplication, and division.
8. If $P(x)$ has a radius of convergence $R>0$, then it is continuous and can be differentiated or integrated term by term on ($a-R, a+R$). However, the resulting series may or may not be convergent at an endpoint of $(a-R, a+R)$.

POWER SERIES (CONCLUDED)

9. A function f is analytic at a point a if it can be represented by a power series in $(x-a)$ with $R>0$.

POWER SERIES SOLUTION TO A

 DIFFERENTIAL EQUATIONTo find a power series solution to a differential equation:

1. Assume a series exists in the form
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$
2. Take derivatives and substitute the series into the differential equation.
3. Solve a recurrence relation for the constants, c_{n}.
4. Write the power series solution.
