Section 6.1

Cauchy-Euler Equation

THE CAUCHY-EULER EQUATION

Any linear differential equation of the from

$$a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 x \frac{dy}{dx} + a_0 y = g(x)$$

where a_n, \ldots, a_0 are constants, is said to be a <u>Cauchy-Euler equation</u>, or <u>equidimensional equation</u>.

<u>NOTE</u>: The powers of *x* match the order of the derivative.

HOMOGENEOUS 2ND-ORDER CAUCHY-EULER EQUATION

We will confine our attention to solving the homogeneous second-order equation.

$$ax^2\frac{d^2y}{dx^2} + bx\frac{dy}{dx} + cy = 0$$

The solution of higher-order equations follows analogously. The nonhomogeneous equation

$$ax^2\frac{d^2y}{dx^2} + bx\frac{dy}{dx} + cy = g(x)$$

can be solved by variation of parameters once the complimentary function, $y_c(x)$, is found.

THE SOLUTION

We try a solution of the form $y = x^m$, where m must be determined. The first and second derivatives are, respectively, $y' = mx^{m-1}$ and $y'' = m(m-1)x^{m-2}$. Substituting into the differential equation, we find that x^m is a solution of the equation whenever m is a solution of the auxiliary equation

am(m-1) + bm + c = 0 or

 $am^2 + (b-a)m + c = 0$

THREE CASES

There are three cases to consider, depending on the roots of the auxiliary equation.

Case I: Distinct Real Roots

Case II: Repeated Real Roots

<u>Case III</u>: Conjugate Complex Roots

CASE I — DISTINCT REAL ROOTS

Let m_1 and m_2 denote the real roots of the auxiliary equation where $m_1 \neq m_2$. Then

$$y_1 = x^{m_1}$$
 and $y_2 = x^{m_2}$

form a fundamental solution set, and the general solution is

$$y = c_1 x^{m_1} + c_2 x^{m_2}$$

CASE II — REPEATED REAL ROOTS

Let $m_1 = m_2$ denote the real root of the auxiliary equation. Then we obtain one solution—namely,

 $y_1 = x^{m_1}$

Using the formula from Section 4.2, we obtain the solution

$$y_2 = x^{m_1} \ln x$$

Then the general solution is

 $y = c_1 x^{m_1} + c_2 x^{m_1} \ln x$

CASE III — CONJUGATE COMPLEX ROOTS

Let $m_1 = \alpha + \beta i$ and $m_2 = \alpha - \beta i$, then the solution is

 $y = C_1 x^{\alpha + \beta i} + C_2 x^{\alpha - \beta i}.$

Using Euler's formula, we can obtain the fundamental set of solutions

 $y_1 = x^{\alpha} \cos(\beta \ln x)$ and $y_1 = x^{\alpha} \sin(\beta \ln x)$.

Then the general solution is

 $y = c_1 x^{\alpha} \cos(\beta \ln x) + c_2 x^{\alpha} \sin(\beta \ln x)$ = $x^{\alpha} [c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x)]$

ALTERNATE METHOD OF SOLUTION

<u>Any</u> Cauchy-Euler equation can be reduced to an equation with constant coefficients by means of the substitution $x = e^t$.