Section 6.1

Cauchy-Euler Equation

HOMOGENEOUS $2^{\text {ND }}$-ORDER CAUCHY-EULER EQUATION

We will confine our attention to solving the homogeneous second-order equation.

$$
a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+c y=0
$$

The solution of higher-order equations follows analogously. The nonhomogeneous equation

$$
a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+c y=g(x)
$$

can be solved by variation of parameters once the complimentary function, $y_{c}(x)$, is found.

THE CAUCHY-EULER EQUATION

Any linear differential equation of the from
$a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} x \frac{d y}{d x}+a_{0} y=g(x)$
where a_{n}, \ldots, a_{0} are constants, is said to be a CauchyEuler equation, or equidimensional equation.

NOTE: The powers of x match the order of the derivative.

We try a solution of the form $y=x^{m}$, where m derivatives are, respectively, $y^{\prime}=m x^{m-1}$ and solution of the equation whenever m is a solution of the auxiliary equation
must be determined. The first and second $y^{\prime \prime}=m(m-1) x^{m-2}$. Substituting into the differential equation, we find that x^{m} is a

$$
\begin{gathered}
a m(m-1)+b m+c=0 \text { or } \\
a m^{2}+(b-a) m+c=0
\end{gathered}
$$

THE SOLUTION

THREE CASES

There are three cases to consider, depending on the roots of the auxiliary equation.

Case I: Distinct Real Roots
Case II: Repeated Real Roots
Case III: Conjugate Complex Roots

CASE I - DISTINCT REAL ROOTS

Let m_{1} and m_{2} denote the real roots of the auxiliary equation where $m_{1} \neq m_{2}$. Then

$$
y_{1}=x^{m_{1}} \text { and } y_{2}=x^{m_{2}}
$$

form a fundamental solution set, and the general solution is

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{2}}
$$

CASE II - REPEATED REAL ROOTS

Let $m_{1}=m_{2}$ denote the real root of the auxiliary equation. Then we obtain one solution-namely,

$$
y_{1}=x^{m_{1}}
$$

Using the formula from Section 4.2, we obtain the solution

$$
y_{2}=x^{m_{1}} \ln x
$$

Then the general solution is

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{1}} \ln x
$$

CASE III - CONJUGATE COMPLEX ROOTS

Let $m_{1}=\alpha+\beta i$ and $m_{2}=\alpha-\beta i$, then the solution is

$$
y=C_{1} x^{\alpha+\beta i}+C_{2} x^{\alpha-\beta i}
$$

Using Euler's formula, we can obtain the fundamental set of solutions

$$
y_{1}=x^{\alpha} \cos (\beta \ln x) \text { and } y_{1}=x^{\alpha} \sin (\beta \ln x) .
$$

Then the general solution is

$$
\begin{aligned}
y & =c_{1} x^{\alpha} \cos (\beta \ln x)+c_{2} x^{\alpha} \sin (\beta \ln x) \\
& =x^{\alpha}\left[c_{1} \cos (\beta \ln x)+c_{2} \sin (\beta \ln x)\right]
\end{aligned}
$$

ALTERNATE METHOD OF SOLUTION

Any Cauchy-Euler equation can be reduced to an equation with constant coefficients by means of the substitution $x=e^{t}$.

