

SIMPLE HARMONIC MOTION

The second-order differential equation

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0 \text{ or } \frac{d^2x}{dt^2} + \omega^2 x = 0$$

where $\omega^2 = k/m$ is the equation that describes <u>simple harmonic motion</u>, or <u>free undamped</u> <u>motion</u>.

INITIAL CONDITIONS

The initial conditions for simple harmonic motion are:

$$x(0) = \alpha, x'(0) = \beta$$

NOTES:

- If α > 0, β < 0, the mass starts from a point |α| units <u>below</u> the equilibrium position with an imparted <u>upward</u> velocity.
- 2. If $\alpha < 0$, $\beta = 0$, the mass is released from <u>rest</u> from a point $|\alpha|$ units <u>above</u> the equilibrium position.

SOLUTION

The general solution of the equation for simple harmonic motion is

 $x(t) = c_1 \cos \omega t + c_2 \sin \omega t$

The **period** of the free vibrations is $T = \frac{2\pi}{\omega}$, and the **frequency** of the vibrations is $f = \frac{1}{T} = \frac{\omega}{2\pi}$.

ALTERNATIVE FORM OF x(t)

When $c_1 \neq 0$ and $c_2 \neq 0$, the actual <u>amplitude</u> *A* of the vibrations is not obvious from the equation on the previous slide. We often convert the equation to the simpler form

$$x(t) = A\sin(\omega t + \phi),$$

where
$$A = \sqrt{c_1^2 + c_2^2}$$
 and ϕ is a phase angle defined by
 $\sin \phi = \frac{c_1}{A}$
 $\cos \phi = \frac{c_2}{A}$ which is equivalent to $\tan \phi = \frac{c_1}{c_2}$