Section 4.5

Differential Operators

DIFFERENTIAL OPERATOR

In calculus, differentiation is often denoted by the capital letter *D*; that is,

$$\frac{dy}{dx} = Dy$$

The symbol *D* is called a **<u>differential</u>** <u>operator</u>, it transforms a differentiable function into another function.

The differential operator is a <u>linear</u> operator.

HIGHER-ORDER DERIVATIVES

Higher order derivatives can be expressed in terms of the differential operator.

$$y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2 y}{dx^2} = D(Dy) = D^2 y$$

In general,

$$y^{(n)} = \frac{d^n y}{dx^n} = D^n y$$

POLYNOMIAL EXPRESSIONS AND DIFFERENTIAL OPERATORS

Polynomial expressions involving *D* are also linear differential operators.

EXAMPLES:

D + 3D² + 3D - 45D³ - 6D² + 4D + 9

WRITING A DIFFERENTIAL EQUATION IN OPERATOR NOTATION

Differential equations can be written in operator notation.

ANNIHILATOR OPERATOR

If *L* is a linear differential operator with constant coefficients and y = f(x) is a sufficiently differentiable function such that

L(y)=0,

then *L* is said to be an **annihilator** of the function.

ANNIHILATOR FOR POLYNOMIALS

If

 $y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$

Then $D^{n+1}(y) = 0$ and, consequently, D^{n+1} annihilates *y*.

ANNIHILATORS FOR $e^{\alpha x}$

If

 $y = e^{\alpha x} (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0)$ = $a_n e^{\alpha x} x^n + a_{n-1} e^{\alpha x} x^{n-1} + \dots + a_1 e^{\alpha x} x + a_0 e^{\alpha x}$

then $(D - \alpha)^{n+1}$ annihilates *y*.

ANNIHILATOR FOR $\sin \beta x$ AND $\cos \beta x$

If $y = e^{\alpha x} (\cos \beta x) (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0)$ or $y = e^{\alpha x} (\sin \beta x) (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0)$ then an annihilator of y is $[D^2 - 2\alpha D + (\alpha^2 + \beta^2)]^{n+1}$

THEOREM

<u>Theorem</u>: If L_1 annihilates y_1 and L_2 annihilates y_2 , then L_1L_2 annihilates $y_1 + y_2$.

<u>NOTE</u>: This result generalizes for more than two functions added together.

COMMENT

The differential operator that annihilates a function is <u>not</u> unique. For example, D - 5 annihilates e^{5x} , but so do differential operators of higher order like D(D - 5). When we want a differential annihilator for a function y = f(x), we want the one of lowest possible order that does the job.