Section 4.4

Undetermined CoefficientsSuperposition Approach

EXISTENCE OF CONSTANTS

Theorem: Let y_{p} be a given solution of the nonhomogeneous $n^{\text {th }}$-order linear differential equation on an interval I, and let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions of the associated homogeneous equation on the interval. Then for any solution $Y(x)$ of the nonhomogeneous equation on I, constants $C_{1}, C_{2}, \ldots, C_{n}$ can be found so that
$Y=C_{1} y_{1}(x)+C_{2} y_{2}(x)+\cdots+C_{n} y_{n}(x)+y_{p}(x)$

SOLUTION OF NONHOMOGENEOUS EQUATIONS

Theorem: Let $y_{1}, y_{2}, \ldots, y_{k}$ be solutions of the homogeneous linear $n^{\text {th }}$-order differential equation on an interval I, and let y_{p} be any solution of the nonhomogeneous equation on the same interval. Then

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)+y_{p}(x)
$$

is also a solution of the nonhomogeneous equation on the interval for any constants $c_{1}, c_{2}, \ldots, c_{k}$.

GENERAL SOLUTIONNONHOMOGENEOUS EQUATION

Definition: Let y_{p} be a given solution of the nonhomogeneous linear $n^{\text {th }}$-order differential equation on an interval I, and let

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

denote the general solution of the associated homogeneous equation on the interval. The general solution of the nonhomogeneous equation on the interval is defined to be

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x) \\
& =y_{c}(x)+y_{p}(x)
\end{aligned}
$$

COMPLEMENTARY FUNCTION

In the definition from the previous slide, the linear combination

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

is called the complementary function for the nonhomogeneous equation. Note that the general solution of a nonhomogeneous equation is
$y=$ complementary function + any particular solution.

SUPERPOSITION PRINCIPLENONHOMOGENEOUS EQUATION

Theorem: Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions of the nonhomogeneous linear $n^{\text {th }}$-order differential equation on an open interval I corresponding, in turn, to k distinct functions $g_{1}, g_{2}, \ldots, g_{k}$. That is, suppose $y_{p_{i}}$ denotes a particular solution of the corresponding DE

$$
a_{n}(x) y^{(n)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=g_{i}(x)
$$

Where $i=1,2, \ldots, k$. Then

$$
y_{p}=y_{p_{1}}(x)+y_{p_{2}}(x)+\cdots+y_{p_{k}}(x)
$$

is a particular solution of
$a_{n}(x) y^{(n)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x)$

FINDING A SOLUTION TO A NONHOMOGENEOUS LINEAR DE

To find the solution to a nonhomogeneous linear differential equation with constant coefficients requires two things:
(i) Find the complementary function y_{c}.
(ii) Find any particular solution y_{p} of the nonhomoegeneous equation.

LIMITATIONS OF THE METHOD OF UNDETERMINED COEFFICIENTS

The method of undetermined coefficients is limited to nonhomogeneous equations which

- coefficients are constant and
- $g(x)$ is a constant k, a polynomial function, an exponential function $e^{a x}, \sin \beta x, \cos \beta x$, or finite sums and products of these functions.

THE PAR OF ${ }^{\text {P }}$	TICULAR SOLUTION $y^{\prime \prime}+b y^{\prime}+c y=g(x)$
$g(x)$	$y_{p(x)}$
$\begin{aligned} P_{n}(x)= & a_{n} x^{n}+a_{n-1} x^{n-1} \\ & +\cdots+a_{0} \end{aligned}$	$x^{s}\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}\right)$
$P_{n}(x) e^{a x}$	$x^{s}\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}\right) e^{a x}$
$\begin{aligned} & P_{n}(x) e^{\alpha x} \sin \beta x \text { or } \\ & P_{n}(x) e^{\alpha x} \cos \beta x \end{aligned}$	$\begin{aligned} & x^{s}\left[\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}\right) e^{\alpha x} \cos \beta x\right. \\ & \left.\quad+\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}\right) e^{\alpha x} \sin \beta x\right] \end{aligned}$

[^0] term of $y_{p}(x)$ is a solution of the corresponding homogeneous equation.

[^0]: NOTE: s is the smallest nonnegative integer which will insure that no

