Section 4.3

Homogeneous Linear Equations with Constant Coefficients

SOLUTIONS TO HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

All solutions of the differential equation

$$
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} \frac{d y}{d x}+a_{0} y=0
$$

are, or are constructed from, exponential functions of the form

$$
y=e^{m x}
$$

NOTE: $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are constants.

THE CHARACTERISTIC EQUATION

Substituting $y=e^{m x}$ results in the auxiliary equation or characteristic equation:

$$
a m^{2}+b m+c=0
$$

SOLUTIONS TO THE HOMOGENEOUS LINEAR $2^{\text {ND }}$ ORDER DE

The solutions to the homogeneous linear second-order differential equation depend on the solutions to the characteristic equation.
The solutions to the characteristic equation fall into three cases:

- Distinct (unequal) real roots
- Repeated (equal) real roots
- Conjugate complex roots

DISTINCT REAL ROOTS

If the characteristic equation has two distinct (unequal) real roots m_{1} and m_{2}, the two solutions to the DE are $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$. This results in the general solution:

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

REPEATED REAL ROOTS

When the roots of the characteristic equation are equal (that is, $m_{1}=m_{2}$), then the two solutions are

$$
y_{1}=e^{m_{1} x} \text { and } y_{2}=x e^{m_{1} x}
$$

NOTE: The second solution comes from the techniques of Section 4.2.
The general solution is:

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

CONJUGATE COMPLEX ROOTS

If the roots of the characteristic equation are conjugate complex roots

$$
m_{1}=\alpha+i \beta \text { and } m_{2}=\alpha-i \beta
$$

then the two solutions are

$$
y_{1}=e^{\alpha x} \cos \beta x \text { and } y_{2}=e^{\alpha x} \sin \beta x
$$

and the general solution is

$$
y=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
$$

