

## **REDUCTION OF ORDER**

Suppose  $y_1(x)$  is a nonzero solution of the equation

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$

The process we use to find a second solution  $y_2(x)$  consists of <u>reducing the order</u> of the above equation to a first-order equation.

## SOLUTION TO A LINEAR 2<sup>ND</sup>-ORDER HOMOGENEOUS DE

The standard form for a linear second-order homogeneous differential equation is

 $y^{\prime\prime} + P(x)y^{\prime} + Q(x)y = 0.$ 

Given a solution  $y_1(x)$ , a second solution to the equation is

$$y_2 = y_1(x) \int \frac{e^{\int P(x)dx}}{y_1^2} dx.$$

NOTE: The solutions  $y_1$  and  $y_2$  are linearly independent.