

REDUCTION OF ORDER

Suppose $y_{1}(x)$ is a nonzero solution of the equation

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

The process we use to find a second solution $y_{2}(x)$ consists of reducing the order of the above equation to a first-order equation.

SOLUTION TO A LINEAR $2^{\text {ND }}$ ORDER HOMOGENEOUS DE

The standard form for a linear second-order homogeneous differential equation is

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 .
$$

Given a solution $y_{1}(x)$, a second solution to the equation is

$$
y_{2}=y_{1}(x) \int \frac{e^{\int P(x) d x}}{y_{1}^{2}} d x .
$$

NOTE: The solutions y_{1} and y_{2} are linearly independent.

