Section 4.1

Initial-Value and Boundary-Value Problems Linear Dependence and Linear Independence Solutions of Linear Equations

INITIAL-VALUE PROBLEM

For the *n*th-order differential equation, the problem Solve: $a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$ Subject to: $y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$, where y_0, y'_0 , etc. are arbitrary constants, is called an <u>initial-value</u> problem.

EXISTENCE OF A UNIQUE SOLUTION

Theorem: Let $a_n(x)$, $a_{n-1}(x)$, ..., $a_1(x)$, $a_0(x)$, and g(x) be continuous on an interval and let $a_n(x) \neq 0$ for every x in the interval. If $x = x_0$ is any point in this interval, then a solution y(x) of the initial-value problem exists on the interval and is unique.

BOUNDARY-VALUE PROBLEM

A problem such as

Solve:
$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Subject to: $y(a) = y_0, y(b) = y_1,$

is called a **<u>boundary-value problem</u>** (BVP). The specified values $y(a) = y_0$ and $y(b) = y_1$ are called **<u>boundary conditions</u>**.

SOLUTION TO BVP

A boundary-variable problem (BVP) can have:

- a unique solution
- several solutions (See Example 6, p. 114.)
- no solution (See Example 7, p. 115.)

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

Definition: A set of functions $f_1(x), f_2(x), \dots, f_n(x)$ is said to be **linearly dependent** on an interval *I* if there exists constants c_1, c_2, \dots, c_n , not all zero, such that

$$c_1 f_1(x) + c_2 f_2(x) + \cdots + c_n f_n(x) = 0$$

for every *x* in the interval.

Definition: A set of functions $f_1(x), f_2(x), \ldots, f_n(x)$ is said to be <u>linearly independent</u> on an interval *I* if it is not linearly dependent on the interval.

THE WRONSKIAN

Theorem: Suppose $f_1(x), f_2(x), \dots, f_n(x)$ possess at least n - 1 derivatives. If the determinant

$$\begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f_1' & f_2' & \cdots & f_n' \\ \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

is not zero for at least one point in the interval I, then the set of functions $f_1(x), f_2(x), \ldots, f_n(x)$ is linearly independent on the interval.

<u>NOTE</u>: The determinant above is called the <u>Wronskian</u> of the function and is denoted by $W(f_1(x), f_2(x), \dots, f_n(x))$.

COROLLARY

<u>Corollary</u>: If $f_1(x), f_2(x), \dots, f_n(x)$ possess at least n - 1 derivatives and are linearly dependent on *I*, then

$$W(f_1(x), f_2(x), \dots, f_n(x)) = 0$$

for every *x* in the interval.

HOMOGENEOUS LINEAR EQUATIONS

An linear *n*th-order differential equation of the form

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

is said to be **<u>homogeneous</u>**, whereas

 $a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$

g(x) not identically zero, is said to be **<u>nonhomogeneous</u>**.

SUPERPOSITION PRINCIPLE – HOMOGENEOUS EQUATIONS

Theorem: Let $y_1, y_2, ..., y_k$ be solutions of the homogeneous linear n^{th} -order differential equation on an interval *I*. Then the linear combination

 $y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_k y_k(x)$

where the c_i , i = 1, 2, ..., k are arbitrary constants, is also a solution on the interval.

TWO COROLLARIES

<u>Corollary 1</u>: A constant multiple $y = c_1y_1(x)$ of a solution $y_1(x)$ of a homogeneous linear differential equation is also a solution.

<u>Corollary 2</u>: A homogeneous linear differential equation <u>*always*</u> possesses the trivial solution y = 0.

CRITERION FOR LINEARLY INDEPENDENT SOLUTIONS

Theorem: Let $y_1, y_2, ..., y_n$ be *n* solutions of the homogeneous linear n^{th} -order differential equation on an interval *I*. Then the set of solutions is <u>linearly independent</u> on *I* if and only if

 $W(y_1, y_2, \dots, y_n) \neq 0$

for every *x* in the interval.

FUNDAMENTAL SET OF SOLUTIONS

Definition: Any linearly independent set y_1, y_2, \ldots, y_n of *n* solutions of the homogeneous n^{th} -order differential equation on an interval *I* is said to be a <u>fundamental</u> set of solutions on the interval.

EXISTENCE OF CONSTANTS

Theorem: Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions of the homogeneous linear $n^{\text{th-}}$ order differential equation on an interval *I*. Then for any solution Y(x) of the equation on *I*, constants $C_1, C_2, ..., C_n$ can be found so that

 $Y = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x).$

EXISTENCE OF A FUNDAMENTAL SET

<u>**Theorem</u>**: There exists a fundamental set of solutions for the homogeneous linear n^{th} -order differential equation on an interval *I*.</u>

GENERAL SOLUTION – HOMOGENEOUS EQUATIONS

Definition: Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions of the homogeneous linear n^{th} -order differential equation on an interval *I*. The **general solution** (or **complete solution**) of the equation on the interval is defined to be

 $y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x),$

where c_1 , i = 1, 2, ..., n are arbitrary constants.