Section 4.1

Initial-Value and Boundary-Value Problems
Linear Dependence and Linear
Independence
Solutions of Linear Equations

INITIAL-VALUE PROBLEM

For the $n^{\text {th }}$-order differential equation, the problem
Solve: $a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
Subject to: $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{0}^{(n-1)}$,
where y_{0}, y_{0}^{\prime}, etc. are arbitrary constants, is called an initial-value problem.

EXISTENCE OF A UNIQUE SOLUTION

Theorem: Let $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$, and $g(x)$ be continuous on an interval and let $a_{n}(x) \neq 0$ for every x in the interval. If $x=x_{0}$ is any point in this interval, then a solution $y(x)$ of the initial-value problem exists on the interval and is unique.

SOLUTION TO BVP

A boundary-variable problem (BVP) can have:

- a unique solution
- several solutions (See Example 6, p. 114.)
- no solution (See Example 7, p. 115.)

BOUNDARY-VALUE PROBLEM

A problem such as
Solve: $a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
Subject to: $y(a)=y_{0}, y(b)=y_{1}$,
is called a boundary-value problem (BVP). The specified values $y(a)=y_{0}$ and $y(b)=y_{1}$ are called boundary conditions.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is said to be linearly dependent on an interval I if there exists constants $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots c_{n} f_{n}(x)=0
$$

for every x in the interval.
Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is said to be linearly independent on an interval I if it is not linearly dependent on the interval.

THE WRONSKIAN

Theorem: Suppose $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ possess at least $n-1$ derivatives. If the determinant

is not zero for at least one point in the interval I, then the set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is linearly independent on the interval.

NOTE: The determinant above is called the Wronskian of the function and is denoted by $W\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$.

COROLLARY

Corollary: If $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ possess at least $n-1$ derivatives and are linearly dependent on I, then

$$
W\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)=0
$$

for every x in the interval.

HOMOGENEOUS LINEAR EQUATIONS

An linear $n^{\text {th }}$-order differential equation of the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

is said to be homogeneous, whereas
$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
$g(x)$ not identically zero, is said to be nonhomogeneous.

SUPERPOSITION PRINCIPLE HOMOGENEOUS EQUATIONS

Theorem: Let $y_{1}, y_{2}, \ldots, y_{k}$ be solutions of the homogeneous linear $n^{\text {th }}$-order differential equation on an interval I. Then the linear combination

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

where the $c_{i}, i=1,2, \ldots, k$ are arbitrary constants, is also a solution on the interval.

TWO COROLLARIES

Corollary 1: A constant multiple $y=c_{1} y_{1}(x)$ of a solution $y_{1}(x)$ of a homogeneous linear differential equation is also a solution.

Corollary 2: A homogeneous linear differential equation always possesses the trivial solution $y=0$.

CRITERION FOR LINEARLY INDEPENDENT SOLUTIONS

Theorem: Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions of the homogeneous linear $n^{\text {th }}$-order differential equation on an interval I. Then the set of solutions is linearly independent on I if and only if

$$
W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0
$$

for every x in the interval.

FUNDAMENTAL SET OF SOLUTIONS

Definition: Any linearly independent set
$y_{1}, y_{2}, \ldots, y_{n}$ of n solutions of the homogeneous $n^{\text {th }}$-order differential equation on an interval I is said to be a fundamental set of solutions on the interval.

EXISTENCE OF CONSTANTS

Theorem: Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions of the homogeneous linear $n^{\text {th }}$ order differential equation on an interval I. Then for any solution $Y(x)$ of the equation on I, constants $C_{1}, C_{2}, \ldots, C_{n}$ can be found so that

$$
Y=C_{1} y_{1}(x)+C_{2} y_{2}(x)+\cdots+C_{n} y_{n}(x)
$$

EXISTENCE OF A FUNDAMENTAL SET

Theorem: There exists a fundamental set of solutions for the homogeneous linear $n^{\text {th }}$-order differential equation on an interval I.

GENERAL SOLUTION HOMOGENEOUS EQUATIONS

Definition: Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions of the homogeneous linear $n^{\text {th }}$ order differential equation on an interval I. The general solution (or complete solution) of the equation on the interval is defined to be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, i=1,2, \ldots, n$ are arbitrary constants.

