Section 3.3

Applications of Nonlinear Equations

EXAMPLE

The number of people in a community who are exposed to a particular advertisement is governed by the logistic equation. Initially $N(0)=500$, and it is observed that $N(1)=$ 1000. If it is predicted that the limiting number of people in the community who will see the advertisement is 50,000 , determine $N(t)$ at time t.

EXAMPLE

A compound C is formed when two chemicals A and B are combined. The resulting reaction between the two chemicals is such that for each gram of $A, 3$ grams of B are used. It is observed that 30 grams of compound C are formed in 10 minutes. Determine the amount of C at any time if the rate of reaction is proportional to the amounts of A and B remaining and if initially there are 40 grams of A and 27 grams of B. How much of the compound C is present at 20 minutes? Interpret the solution as $t \rightarrow \infty$.

THE LOGISTIC EQUATION

The equation

$$
\frac{d P}{d t}=P(a-b P)
$$

where a and b are constants, is called the logistic equation. Its solution is called the logistic function (the graph of which is called the logistic curve).

SECOND ORDER CHEMICAL REACTIONS

Radioactive decay, where the rate at which decomposition takes place is proportional to the amount present, is said to be a first-order reaction. Now in the reaction

$$
\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{NaCl}
$$

the rate at which the reaction proceeds depends on both the remaining amount of $\mathrm{CH}_{3} \mathrm{Cl}$ and the remaining NaOH . This is an example of a second-order reaction. A differential equation for this is given by

$$
\frac{d X}{d t}=k(\alpha-X)(\beta-X)
$$

where α and β are the given amounts of $\mathrm{CH}_{3} \mathrm{Cl}$ and NaOH and X is the amount of $\mathrm{CH}_{3} \mathrm{OH}$ produced.

ESCAPE VELOCITY

In Section 1.2, we saw that the differential equation of a free-falling object of mass m near the surface of the earth is

$$
m \frac{d^{2} s}{d t^{2}}=-m g \text { or simply } \frac{d^{2} s}{d t^{2}}=-g
$$

where s represents the distance from the surface of the earth. The assumption is that the distance y from the center of the earth is approximately the radius R of the earth. If we consider a rocket (space probe, etc.) whose distance y is large when compared to R, we combine Newton's second law of motion and his law of universal gravitation to produce a differential equation in the variable y.

ESCAPE VELOCITY (CONCLUDED)

The solution to the differential equation can be used to determine the minimum velocity needed by a rocket to break free from the earth's gravitational attraction. This velocity is called the escape velocity.

