Section 2.4

Exact Equations

TOTAL DIFFERENTIAL

Definition: The total differential of a function $z=f(x, y)$, with continuous first partial derivatives in a region R in the $x y$-plane is

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

TOTAL DIFFERENTIAL AND SOLUTION TO A DE

For a family of curves,

$$
f(x, y)=c
$$

its total differential $d f(x, y)=0$, and hence is a solution of the first-order differential equation:

$$
\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=0
$$

CRITERION FOR AN EXACT DIFFERENTIAL EQUATION

Theorem: Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives in a rectangular region R defined by $a<x<b, c<y<d$. The differential equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact if and only if

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{2}
\end{equation*}
$$

SOLVING AN EXACT EQUATION

1. Show $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
2. Assume $\frac{\partial f}{\partial x}=M(x, y)$. Find f by integrating $M(x, y)$ with respect to x, while holding y constant. We can write

$$
f(x, y)=\int M(x, y) d x+g(y)
$$

where the arbitrary function $g(y)$ is the "constant" of integration.
3. Differentiate (1) with respect to y and set equal to $N(x, y)$. This yields, after solving for $g^{\prime}(y)$,

$$
g^{\prime}(y)=N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x
$$

4. Integrate (2) with respect to y and substitute the result into (1). The solution to the DE is $f(x, y)=c$.

INTEGRATING FACTORS

It is sometimes possible to convert a nonexact differential equation into an exact equation by multiplying it by a function $\mu(x, y)$ called an integrating factor.

NOTE: It is possible for a solution to be lost or gained as a result of multiplying by an integrating factor.

