Section 2.3

Homogeneous Equations

HOMOGENEOUS FUNCTION

Definition: A function, f(x, y), is said to be **homogeneous of degree** *n* if

 $f(tx,ty) = t^n f(x,y)$

for some real number *n*.

EXAMPLES

Determine whether the function is homogeneous. If so, state the degree of homogeneity.

1.
$$f(x, y) = x^2 y - 4x^3 + 3xy^2$$

2. $f(x, y) = x + y^2$
3. $f(x, y) = \frac{x}{y}$

HOMOGENEOUS DIFFERENTIAL EQUATION

Definition: A differential equation of the form

M(x, y)dx + N(x, y)dy = 0

is said to be **homogeneous** if both *M* and *N* are homogeneous functions of the same degree.

EXAMPLE: $(x^2 + y^2)dx + 2xy dy = 0$

ALTERNATE VIEW OF HOMOGENEOUS EQUATION

The differential equation

$$\frac{dy}{dx} = f(x, y)$$

is a homogeneous equation if f(x, y) depends on the ratio $\frac{x}{y}$ or $\frac{y}{x}$. That is, it can be written in the form

 $F\left(\frac{x}{y}\right)$ or $F\left(\frac{y}{x}\right)$

for some function F.

<u>EXAMPLE</u>: $\frac{dy}{dx} = \frac{x}{2y} + \frac{y}{2x}$

SOLVING A HOMOGENEOUS EQUATION

1. Use the substitution y = ux to change the dependent variable from y to u. Note that

$$\frac{dy}{dx} = \frac{du}{dx}x + u$$
 and

 $dy = u \, dx + x \, du$

2. Separate the variables and solve the equation using the techniques of Section 2.2.

NOTE: The substitution x = vy can also be used. As a guide, use this one whenever M(x, y) is simpler than N(x, y).