
Section	11.3:		The	Integral	Test	and	
Estimates	of	Sums	

	
The	Integral	Test:	
	
Theorem	(The	Integral	Test):		Let		f		be	a	continuous,	positive,	and	decreasing	function	on	
the	interval	 ,∞ ,	where	c	is	a	positive	integer,	and	suppose	that		 		for	all	
positive	integers	 .		Then		∑ 	converges	if	and	only	if	the	improper	integral	

		converges.		In	other	words:	

	 (i)	 If	 		is	convergent,	then	∑ 	is	convergent.	

	 (ii)	 If	 		is	divergent,	then	∑ 	is	divergent.	

	
NOTES:	
1.	 The	Integral	Test	is	for	positive	series	only;	that	is,	when	the	series	has	all	positive	

terms.	
2.	 In	the	application	of	this	test,	neither	the	series	nor	the	integral	has	to	start	with	1.	
3.	 This	test	does	not	give	the	sum	of	the	series.		This	test	states	that	the	convergence	of	

one	implies	the	convergence	of	the	other.		(And	the	divergence	of	one	implies	the	
divergence	of	the	other.)	

	
	
Examples:		Use	the	Integral	Test	to	determine	if	the	following	series	converge	or	diverge.	
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A	Proof	of	the	Integral	Test:	
	

	
	
The	sum	∑ 		gives	the	area	of	the	lower	rectangles	while	the	sum	∑ 		gives	the	
area	of	the	upper	rectangles.	



3	

 

1.	 Observe	that	the	area	under	the	curve,	 ,	approximates	 	such	that	

	

	
2.	 Now,	observe	that,	by	definition,	 ∑ ∑ ,	and	from	1	we	have	

	

	

	
3.	 Since	∑ ∑ ,	we	see	that		∑ ∑ .		And	since	

∑ ,	we	have	∑ .		Finally,	from	1,	we	see	that	

	 ∑ .		Hence,	 .		Therefore,	from	2	and	3,	we	have	

	

	 and	

lim
→

	

	
	

4.	 Thus,	we	see	that	if	 	diverges,	then	lim → ∑ 	also	diverges.	

	

5.	 Finally,	we	see	that	if	 	converges,	then	since	a1	is	finite,	

	 lim → ∑ 	also	converges.		If		lim → ∑ 	converges,	then	

	also	converges.		▄	
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Approximating	the	Sum	of	a	Series:	
	
	 We	can	use	the	Integral	Test	to	bound	the	error	on	the	approximation	of	a	series	by	
summing	its	first	N	terms.		(Note:	The	terms	of	this	series	must	be	decreasing.)		Consider	
the	following	series:	

	

	
The	last	summation	∑ 	is	called	the	remainder	(or	error)	between	the	value	of	the	
partial	sum	 ∑ 	and	the	true	sum	of	the	series.	
	
	 Observe	that	remainder	is	the	lower	sum	of	rectangles	that	we	used	to	define	the	
definite	integral.		Thus,	

	

and	

	

Notice	that	what	this	is	really	saying	is	that	the	tail	of	the	series	is	bounded	above	by	the	
improper	integral.	
	
	
Example:		Find	the	sum	of	the	following	series	with	an	error	of	less	than	0.0001.	

1
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p‐Series:	
	
The	series	

1
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1
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⋯ ,	

where	 	is	a	constant	is	called	a	p‐series.	
	
We	will	show	that	a	 ‐series	
	 (a)	 converges	if	 1	and	
	 (b)	 diverges	if	 1.	
	

NOTE:		When	 1,	∑ 	is	called	the	harmonic	series.	

	

To	show	the	two	statements	in	(a)	and	(b)	above,	we	will	use	the	Integral	Test	on	∑ 	.	

	
Part	1:		For	 1.	

1
lim
→

1
lim
→

	

lim
→ 1

	

lim
→ 1

1
1

	

	 Case	1:	 If		1 0		(i.e.,	 1),	then	lim → ∞.		So,	the	improper	integral	

diverges,	and	by	the	Integral	Test	the	series	diverges	if	 1.	

	 Case	2:	 If	1 0		(i.e.,	 1),	then	lim → 0.		Thus,	the	improper	integral	

converges	to	 .		By	the	Integral	Test	the	series	converges.	
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Part	2:		For	 1.	
1

lim
→

1
	

lim
→

ln| | 	

lim
→

ln ln 1 	

lim
→

ln ∞	

	 So,	the	improper	integral	diverges,	and	by	the	Integral	Test,	the	series	diverges.	
	

Therefore,	we	have	shown	that	∑ 	converges	if	 1	and	diverges	if	 1.	

	
Examples:		Determine	whether	the	following	series	diverge	or	converge.	
	

1.					
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