Review for TEST II - In-Class Portion
 MATH 3502

1. (a) Find the orthogonal trajectories of the family of curves $y\left(x^{3}+c_{1}\right)=3$.
(b) Find the orthogonal trajectory to the family $y=4 x+1+c_{1} e^{4 x}$ passing through the point $(0,0)$.
(c) Find the orthogonal trajectories of the family of parabolas opening in the y direction with vertex at $(1,2)$.
2. (a) The radioactive isotope plutonium-241 decays so as to satisfy the differential equation

$$
\frac{d A}{d t}=-0.0525 A
$$

Where A is measured in milligrams and t in years. Determine the half-life h of plutonium-241. If 50 mg of plutonium- 241 are present today, how much will remain in 10 years?
(b) An object is taken out of a $65^{\circ} \mathrm{F}$ room and placed outside where the temperature is $35^{\circ} \mathrm{F}$. Fifteen minutes later the temperature is $60^{\circ} \mathrm{F}$. It cools according to Newton's Law. What is the temperature of the object after one hour?
(c) The population of a town grows at a rate proportional to the number of people, $P(t)$, at time t. If the initial population is P_{0}, and if the size doubles in twelve years, how long does it take the population to triple in size?
3. Solve the following differential equations.
(a) $y^{\prime \prime}+2 y^{\prime}+y=0$
(b) $y^{\prime \prime}-2 y^{\prime}+6 y=0$
(c) $y^{\prime \prime}-2 y^{\prime}-2 y=0$
(d) $y^{\prime \prime}+5 y^{\prime}=0$
(e) $4 y^{\prime \prime}+4 y^{\prime}+y=0$
(f) $y^{\prime \prime}+6 y^{\prime}+13 y=0$
(g) $y^{\prime \prime}-3 y^{\prime}+5 y=4 x^{3}-2 x$
(h) $y^{\prime \prime}-2 y^{\prime}+y=x^{2} e^{x}$
(i) $y^{\prime \prime \prime}-5 y^{\prime \prime}+6 y^{\prime}=2 \sin x+8$
(j) $y^{\prime \prime \prime}-y^{\prime \prime}=6$

Answers

1. (a) $y^{3}+\frac{3}{x}=c_{2}$
(b) $x=\frac{1}{4} y+\frac{1}{64}-\frac{1}{64} e^{16 y}$
(c) $(y-2)^{2}=x-\frac{1}{2} x^{2}+c_{2}$
2. (a) $h=13.20$ years; 29.6 mg
(b) $49.5^{\circ} \mathrm{F}$
(c) 19.8 years
3.

(a) $y=c_{1} e^{-x}+c_{2} x e^{-x}$
(b) $y=c_{1} e^{x} \sin \sqrt{5} x+c_{2} e^{x} \cos \sqrt{5} x$
(c) $y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}$
(d) $y=c_{1}+c_{2} e^{-5 x}$
(e) $y=c_{1} e^{-x / 2}+c_{2} x e^{-x / 2}$
(f) $y=e^{-3 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$
(g) $y=e^{3 x / 2}\left(c_{1} \cos \frac{\sqrt{11}}{2} x+c_{2} \sin \frac{\sqrt{11}}{2} x\right)+\frac{4}{5} x^{3}+\frac{36}{25} x^{2}+\frac{46}{125} x-\frac{222}{625}$
(h) $y=c_{1} e^{x}+c_{2} x e^{x}+\frac{1}{12} x^{4} e^{x}$
(i) $y=c_{1}+c_{2} e^{2 x}+c_{3} e^{3 x}+\frac{4}{3} x-\frac{1}{5} \cos x+\frac{1}{5} \sin x$
(j) $y=c_{1}+c_{2} x+c_{3} e^{x}-3 x^{2}$

