Study Guide for TEST I

MATH 3502

1. Classify the given differential equation as to type and order. Classify the ordinary differential equations as to linearity.
(a) $\left(2 x y-y^{2}\right) d x+e^{x} d y=0$
(b) $(\sin x y) y^{\prime \prime \prime}+4 x y^{\prime}=0$
(c) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=u$
(d) $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+y=x^{2}$
2. Verify that the indicated function is a solution of the given differential equation.
(a) $y^{\prime}+2 x y=2+x^{2}+y^{2} ; y=x+\tan x$
(b) $x^{2} y^{\prime \prime}+x y^{\prime}+y=0 ; \quad y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x), x>0$
(c) $y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=6 ; y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{2 x}+3$
3. Without solving classify each of the following equations as to whether it is separable, homogeneous, exact, linear, Bernoulli, Ricatti, or Clairaut.
(a) $\frac{d y}{d x}=\frac{1}{y-x}$
(b) $\frac{d y}{d x}=\frac{x-y}{x}$
(c) $\left(\frac{d y}{d x}\right)^{2}+2 y=2 x \frac{d y}{d x}$
(d) $\frac{d y}{d x}=\frac{1}{x(x-y)}$
(e) $\frac{d y}{d x}=\frac{y^{2}+y}{x^{2}+x}$
(f) $\frac{d y}{d x}=4+5 y+y^{2}$
(g) $y d x=\left(y-x y^{2}\right) d y$
(h) $x \frac{d y}{d x}=y e^{x / y}-x$
(i) $x y y^{\prime}+y^{2}=2 x$
(j) $2 x y y^{\prime}+y^{2}=2 x^{2}$
(k) $y d x+x d y=0$
(l) $\left(x^{2}+\frac{2 y}{x}\right) d x=\left(3-\ln x^{2}\right) d y$
(m) $\frac{d y}{d x}=\frac{x}{y}+\frac{y}{x}+1$
(n) $\frac{y}{x^{2}} \frac{d y}{d x}+e^{2 x^{3}+y^{2}}=0$
(o) $y=x y^{\prime}+\left(y^{\prime}-3\right)^{2}$
(p) $y^{\prime}+5 y^{2}=3 x^{4}-2 x y$
4. Solve the following differential equations.
(a) $\frac{y}{x} \frac{d y}{d x}=\frac{e^{x}}{\ln y}$ subject to $y(1)=1$
(b) $x y y^{\prime}=3 y^{2}+x^{2}$ subject to $y(-1)=2$
(c) $(6 x+1) y^{2} \frac{d y}{d x}+3 x^{2}+2 y^{3}=0$
(d) $y e^{x y} \frac{d x}{d y}+x e^{x y}=12 y^{2}$ subject to $y(0)=-1$
(e) $\left(x^{2}+4\right) \frac{d y}{d x}=2 x-8 x y$ subject to $y(0)=-1$
(f) $x \frac{d y}{d x}+4 y=x^{4} y^{2}$ subject to $y(1)=1$

Answer

1. (a) first-order; ordinary; nonlinear because of y^{2}
(b) third-order; ordinary; nonlinear because of $\sin x y$
(c) second-order; partial
(d) second-order; ordinary; linear
2. (a) linear in x
(b) linear in y, homogeneous, exact
(c) Clairaut
(d) Bernoulli in x
(e) separable
(f) separable, Riccati
(g) linear in x
(h) homogeneous
(i) Bernoulli
(j) homogeneous, exact, Bernoulli
(k) linear in x and y, exact, separable, homogeneous
(l) exact, linear in y
(m) homogeneous
(n) separable
(o) Clairaut
(p) Ricatti
3. (a) separable; $2 y^{2} \ln |y|-y^{2}=4 x e^{x}-4 e^{x}-1$
(b) homogeneous; $2 y^{2}+x^{2}=9 x^{6}$
(c) Bernoulli and exact (work it both ways); $(6 x+1) y^{3}=-3 x^{3}+c$
(d) exact; $e^{x y}=4 y^{3}+5$
(e) separable and linear with integrating factor $\left(x^{2}+4\right)^{4}$;

$$
y=\frac{1}{4}-\frac{320}{\left(x^{2}+4\right)^{4}}
$$

(f) Bernoulli; $y=\left(x^{4}-x^{4} \ln x\right)^{-1}$

