
Section	11.9:	Representations	of	Functions	
as	Power	Series	

	
Differentiation	and	Integration	of	Power	Series:	
	
	 If	the	domain	of	a	power	series	(i.e.,	the	interval	of	convergence)	is	not	a	single	point,	
then	(with	the	possible	exception	of	endpoints—see	note	below):	
1.	 f		is	differentiable	in	the	same	domain:	

⋯	

and	

′ 0 2 3 ⋯	

or		 	

																				NOTE:		 	

	
2.	 and	the	integral	can	be	determined:	

⋯	

and	

⋯	

or		
1

	

	
	
NOTES:	
1.	 This	result	states	that	functions	defined	by	power	series	behave	exactly	like	

polynomial	functions;	i.e.,	they	are	continuous	on	their	interval	of	convergence,	and	
derivatives	and	antiderivatives	can	be	found	just	like	for	polynomials	(by	
differentiating	and	integrating	each	term)	

2.	 After	taking	the	derivative	and	if	the	original	series	has	convergent	endpoint(s),	then	
check	the	endpoints	of	the	new	series.		There	is	no	need	to	check	endpoints	if	the	
original	series	did	not	have	convergent	endpoints.	

3.	 After	integration,	check	endpoints	even	if	the	original	series	has	no	convergent	
endpoints.	
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Example:		Suppose	
1 1

	

		
(a)	 Find	the	interval	of	convergence	of	 .	
(b)	 Find		 	and	find	its	interval	of	convergence.	
(c)	 Find	 ,	and	find	its	interval	of	convergence.	
	
(a)	 We	use	the	Ratio	Test.	

lim
→

1 1
1

1 1
lim
→

1
1

⋅
1

	

| 1| lim
→ 1

	

| 1| ⋅ 1	
| 1| 1	

	 Thus,	the	radius	of	convergence	is	 1.		By	solving	the	absolute	value	equation,	we	
find	that	the	interval	on	convergence	is	at	least	0 2		or	 0, 2 .	

	 Now,	we	must	check	the	endpoints.	
x	=	0:	

1 0 1 1 1
	

1
	

1
	

	 	 This	series	diverges	since	it	is	 1	times	the	harmonic	series.	
x	=	2:	

1 2 1 1 1 1
	

	 This	series	converges	since	it	is	the	alternating	harmonic	series.		Recall	the	
alternating	harmonic	series	converges	by	the	AST.	

	 So,	the	interval	of	convergence	for	 	is	0 2	or	 0, 2 .	
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(b)	 Now,	let’s	take	the	derivative	of	 .	
1 1

	

1 1
	

1 1 	

	 By	the	result	on	page	1,	we	know	this	series	converges	at	least	on	the	interval	0
2.		Since	the	original	power	series	did	not	converge	at	the	endpoint	 0,	the	series	
found	by	taking	the	derivative	does	not	converge	at	 0.		So,	we	only	need	to	check	
the	endpoint	 2.	

	 x	=	2:	

1 2 1 1 1 1 	

	 	 	 	 This	series	diverges	by	the	nth	Term	Test.	
	 So,	the	interval	of	convergence	of	 	is	0 2	or	 0, 2 .	
(c)	 Now,	let’s	take	the	integral	of	 .	

1 1 1 1
1

	

	 By	the	result	on	page	1,	we	know	that	this	new	series	converges	for	0 2	or	
0, 2 .		However,	we	need	to	check	the	endpoints.		(When	integrating,	the	new	series	
may	become	convergent	at	the	endpoints.)	

	 x	=	0:			
1 0 1

1
1

1
1
1
	

	 	 	

	 	 Now,	using	the	LCT	and	comparing	the	series	to	a	 ‐series	with	 2	 ∑ ,	

we	find	the	series	converges	since	

lim
→

1
1

1 lim
→

1
1
⋅
1
	

lim
→

1	
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x	=	2:			
1 2 1

1
1 1

1
1

1
	

	 	
	 	 	 This	series	converges	by	the	AST	since	 lim

→
0	and	the	series	in	

decreasing,	that	is	
1

1 2
1
1
	.	

	 Thus	the	interval	of	convergence	for	the	antiderivative	of	the	power	series	is	0
2	or	 0, 2 .	

	
	
Power	Series	as	Functions:	
	
	 A	power	series	represents	an	infinite	series	and	a	function	with	a	specific	domain.		
Consider	the	geometric	series	

1 ⋯	

where	 1	and	 .		The	interval	of	convergence,	| | 1	or	 1 1,	determines	
the	domain	of	the	function,	 1, 1 .		Since	we	know	a	formula	for	the	sum	of	a	convergent	
geometric	series,	we	can	say	that	

1
1

		for	 	in	 1, 1 	.	

	
Examples:	
	
1.	 Convert	

3
	

	 to	function	notation.		State	the	domain.	

3 3
1

1 3

3
3

	

for	 1		or		 √3 √3	

	 	
	 So,		 		for		 √3 √3.	
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2.	 Find	the	geometric	series	represented	by		 	centered	at	 0.	

2 3 3
1

2
3 1 3

⋅
1

1 2
3

	

3
2
3 3

1 2
3

1 2
3

	

	

	 	 The	domain:		 1		or		| | 		or		 .	

		
	 So,	

1 2
3

			for	
3
2

3
2
	.	

		
3.	 Develop	a	power	series	for		 	centered	at	 2.	

3
4

3
6 2

3
6
⋅

1

1 2
6

	

	 So,	
1
2

2
6

	

	 where		 1		or		| 2| 6.	

Hence,	the	radius	of	convergence	is	 6,	and	the	interval	of	convergence	is	 8
4.		Thus,	

1
2

2
2 3

2
2 3

		for	 8 4	.	

	
	
Operations	on	Power	Series:	
	
Let		 ∑ 		and	 ∑ .		Then	
	 i.	 ∑ 	
	 ii.	 ∑ 	
	 iii.	 ∑ 	
	
NOTE:		These	operations	may	change	the	interval	of	convergence	of	the	power	series.	
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Example:		Determine	a	power	series	for	the	function		
2

1
	.	

By	using	partial	fraction	decomposition,	we	see	that	
2

1
1

1
1

1
	.	

From	page	3,	we	know	that	
1

1
	.	

Substituting	 	for	 ,	we	see	that	
1

1
1

1
1 	.	

Thus,	
2

1
1 	

1 1 	

2 	

The	last	line	coming	from	the	fact	that	when	 	is	odd	the	coefficient	of	 	is	 2	and	when	 	
is	even	the	coefficient	is	0.		Using	the	Ratio	Test,	we	can	show	that	the	interval	of	
convergence	is	 1 1.		(Verify	this!)		The	endpoints	are	not	included.			(Verify	this	
also!)	
	
	
Using	Differentiation	and	Integration	to	Represent	Functions	as	Power	Series:	
	
Examples:	
	
1.	 Find	a	power	series	representation	for		 	centered	at	 0.	

	 We	begin	by	observing	that	

2 1 1 	

and	

1 1
1
1
	

1
1

1
1

1 		

for	 1 1	since	geometric	series.	
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	 Next,	we	take	the	derivative	of	the	above	series	twice.	

1 1 1 	

1 1 1 	

1 1 	

	 The	last	series	converges	for	 1 1.	
NOTE:		There	is	no	need	to	check	the	endpoints	since	before	taking	derivatives	of	the	
series,	the	geometric	series	did	not	have	convergent	endpoints.	

	
2.	 Find	a	series	representation	for	 arctan .	
	 We	first	note	that	up	to	a	constant	

tan
1

1
	

	 Now,	we	know	(by	geometric	series)	that	
1

1
1 ⋯	

	 for	 1 1.		Thus,	
1

1
1 ⋯	

1 ⋯	

1 	.	

	
	 The	above	series	converges	for		| | 1		or	 1 1.	
	 Now,	we	integrate	the	above	power	series	to	get	

tan 1
2 1

	

3 5 7
⋯	

	 for	 1 1.		Substituting	 0,	we	find	that	 0.		Hence,	

tan 1
2 1

	

3 5 7
⋯	

	
which	converges	for	 1 1.			However,	since	we	integrated	a	power	series,	we	
must	check	to	see	if	the	new	series	converges	at	the	endpoints.	
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Check	 :	

1
1
2 1

1
2 1

	

which	converges	by	the	Alternating	Series	Test	since	

lim
→

1
2 1

0			and		
1

2 3
1

2 1
	.	

Check	 :		

1
1
2 1

1
2 1

	

which	converges	by	the	Alternating	Series	Test	(see	above).	
Consequently,	we	find	that	

tan 1
2 1

			for		 1 1	.	
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Exercises	
	

1.	 Using	a	geometric	series,	develop	a	power	series	centered	at	 	for	the	following	
functions.		State	the	domain.		(Be	Sure	to	check	endpoint	if	applicable.)	

a 				
2

5
		about		 2																	 :		

2 2
3

, 1 5	

b 			
1

1
		about		 0									 :		 , 1 1	

c 				 ln 1 	about		 0								 :		
1

1
, 1 1	

d 				
1
1
		about		 0														 :		 1 1 , 1 1	

:		
1
1 1

1
1
	

	 	
	
2.	 Convert	the	following	power	series	to	functional	notation.		State	the	domain.		(Be	sure	

to	check	endpoints	if	applicable.)	
	

a 				 																																										 :		
1

, 1 1	

	

b 				 																													 :		
1

1
, 1 1	

	

c 				
2
3

																																			 :		
6

3
, √3 √3	

	

d 				
1
																																									 :		 ln|1 | , 1 1	

	

e 				
1
2 1

																													 :		 arctan tan , 1 1	

	

f 				
1 1

1
																				 :		 ln|2 | , 0 2	


