Section 11.8: Power Series

Introduction:

So far we have only talked about series of constants. For example,

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n-1}
$$

We asked if such series converge or diverge.
Now, we want to discuss series of functions. For example,

$$
\sum_{n=1}^{\infty} \frac{\sin n x}{2^{n}}
$$

Now the question we ask is:
For what values of x does the series converge?
Another related question is:
If the series converges for some values of x, what function does it converge to; that is, what is $s(x)$?
We are only going to discuss very special series of functions called power series.

Power Series and Convergence:

A series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

is called a power series centered at $x=a$. Each partial sum is a polynomial.
Example:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(2 x+1)^{n}}{n!} & =\sum_{n=0}^{\infty} \frac{2^{n}\left(x+\frac{1}{2}\right)^{n}}{n!} \\
& =1+2\left(x+\frac{1}{2}\right)+\frac{2^{2}\left(x+\frac{1}{2}\right)^{2}}{2}+\frac{2^{3}\left(x+\frac{1}{2}\right)^{3}}{3!}+\frac{2^{4}\left(x+\frac{1}{2}\right)^{4}}{4!}+\cdots
\end{aligned}
$$

The coefficients are: $c_{0}=1, c_{1}=2, c_{2}=2, c_{3}=\frac{4}{3}, c_{4}=\frac{2}{3}, \ldots$.
The center is: $a=-\frac{1}{2}$.
The infinite power series is a function of x defined for those values of x for which the series converges. The set of values of x for which the power series converges is called the interval of convergence or the convergence set.

The interval of convergence, $a-r<x<a+r$, has a radius of convergence, r.

For the power series,

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

we use the Ratio Test to determine the domain of $f(x)$ and thus determine the convergence set.

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_{n}(x-a)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)}{c_{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|
$$

Notice the Ratio Test tells us that

$$
|x-a| \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|
$$

must be less than 1 for the series to converge. Let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|
$$

and consider the following three cases:
CASE $1(\boldsymbol{\rho}=\mathbf{0})$: If $\rho=0$, then the power series is convergence for all x since

$$
|x-a| \rho=0<1
$$

The interval of convergence is $-\infty<x<\infty$ or $(-\infty, \infty)$ and the radius of convergence is $r=\infty$.

Example:
$\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=0 \text { for all values of } x
$$

center: $a=0$
radius of convergence: $r=\infty$
convergence set: $(-\infty, \infty)$

CASE $2(\rho=\infty)$: If $\rho=\infty$, then the power series converges for $x=a$ only since by the Ratio Test the series diverges for all values of x except $x=a(r=0, x=a)$.

Example:
$\sum_{n=0}^{\infty} n!(x-2)^{n}$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(x-2)^{n+1}}{n!(x-2)^{n}}\right|=|x-2| \lim _{n \rightarrow \infty}(n+1)=\infty \\
\text { for all values of } x \text { except } a=2
\end{gathered}
$$

center: $a=2$
radius of convergence: $r=0$
convergence set: $x=2$

CASE $3(\rho \neq 0$ and $\rho \neq \infty)$: If $\rho \neq 0$ and $\rho \neq \infty$, then by the Ratio Test,

$$
|x-a| \rho
$$

must be less than 1 for the series to converge. The series, not counting endpoints, converges absolutely for those values of x such that

$$
|x-a| \rho<1 \text { or }|x-a|<\frac{1}{\rho}
$$

Thus, $\frac{1}{\rho}$ is the radius of convergence.
To determine whether the endpoints are included in the domain (interval of convergence), a test other than the Ratio Test must be used. (Recall when $|x-a| \rho=1$ the Ratio Test fails.)

Example:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n(2 x+1)^{n}}{n+1}=\sum_{n=1}^{\infty} \frac{n \cdot 2^{n}\left(x+\frac{1}{2}\right)^{n}}{n+1} \\
& \lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1) \cdot 2^{n+1}\left(x+\frac{1}{2}\right)^{n+1}}{n+2}}{\frac{n \cdot 2^{n}\left(x+\frac{1}{2}\right)^{n}}{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) \cdot 2^{n+1}\left(x+\frac{1}{2}\right)^{n+1}}{n+2} \cdot \frac{n+1}{n \cdot 2^{n}\left(x+\frac{1}{2}\right)^{n}}\right| \\
& =\left|x+\frac{1}{2}\right| \lim _{n \rightarrow \infty} \frac{2(n+1)^{2}}{n(n+2)} \\
& =\left|x+\frac{1}{2}\right| \lim _{n \rightarrow \infty} \frac{2 n^{2}+4 n+2}{n^{2}+2 n} \\
& =\left|x+\frac{1}{2}\right| 2
\end{aligned}
$$

Thus, the series converges when

$$
\left|x+\frac{1}{2}\right| 2<1 \text { or }\left|x+\frac{1}{2}\right|<\frac{1}{2}
$$

Hence,

$$
\begin{gathered}
-\frac{1}{2}<x+\frac{1}{2}<\frac{1}{2} \\
-\frac{1}{2}-\frac{1}{2}<x<\frac{1}{2}-\frac{1}{2} \\
-1<x<0
\end{gathered}
$$

center: $a=-\frac{1}{2}$
radius of convergence: $r=\frac{1}{2}$
Now, before stating the interval of convergence, we need to check the endpoints of the interval, namely $x=-1$ and $x=0$.

When $x=-1$, the power series is

$$
\sum_{n=1}^{\infty} \frac{n(-1)^{n}}{n+1}
$$

This series diverges by the $n^{\text {th }}$ Term Test since

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

When $x=0$, the power series is

$$
\sum_{n=1}^{\infty} \frac{n}{n+1}
$$

which also diverges by the $n^{\text {th }}$ Term Test since

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

Thus, the interval of convergence is

$$
-1<x<0 \text { or }(-1,0)
$$

the radius of convergence is

$$
r=\frac{1}{2}
$$

and the center is

$$
a=-\frac{1}{2} .
$$

Additional Examples: Find the interval and radius of convergence of the following power series.

1. $\sum_{n=2}^{\infty} \frac{x^{n}}{\ln n}$
2. $\sum_{n=1}^{\infty} \frac{(x-2)^{2 n}}{n^{3}}$
