Section 11.8: Power Series

Introduction:

So far we have only talked about series of constants. For example,
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We asked if such series converge or diverge.
Now, we want to discuss series of functions. For example,
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Now the question we ask is:
For what values of x does the series converge?
Another related question is:
If the series converges for some values of x, what function does it converge to; that is,
what is s(x)?
We are only going to discuss very special series of functions called power series.

Power Series and Convergence:
A series of the form
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is called a power series centered at x = a. Each partial sum is a polynomial.
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The coefficientsare: co =1, ¢; =2, c; =2, ¢3 = 3 Ca =3,
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The centeris: a = s

The infinite power series is a function of x defined for those values of x for which
the series converges. The set of values of x for which the power series converges is called
the interval of convergence or the convergence set.

The interval of convergence, a — r < x < a + r, has a radius of convergence, r.




For the power series,
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we use the Ratio Test to determine the domain of f(x) and thus determine the convergence
set.
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Notice the Ratio Test tells us that
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must be less than 1 for the series to converge. Let
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and consider the following three cases:

CASE 1 (p = 0): If p = 0, then the power series is convergence for all x since

lx —alp=0<1.
The interval of convergence is —oo < x < oo or (—o0, ) and the radius of convergence is
r = 00,
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center: a =0
radius of convergence: r = o
convergence set: (—oo, )



CASE 2 (p = x): If p = oo, then the power series converges for x = a only since by the
Ratio Test the series diverges for all values of x except x = a (r = 0,x = a).
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for all values of x excepta = 2

center: a = 2
radius of convergence: r = 0
convergence set: x = 2

CASE 3 (p # 0 and p # o): If p # 0 and p # oo, then by the Ratio Test,
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must be less than 1 for the series to converge. The series, not counting endpoints, converges
absolutely for those values of x such that
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Thus, o is the radius of convergence.

To determine whether the endpoints are included in the domain (interval of
convergence), a test other than the Ratio Test must be used. (Recall when [x —a|p =1
the Ratio Test fails.)
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Thus, the series converges when
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Hence,
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Now, before stating the interval of convergence, we need to check the endpoints of
the interval, namely x = —1 and x = 0.
When x = —1, the power series is
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This series diverges by the nt Term Test since
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When x = 0, the power series is
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which also diverges by the nth Term Test since
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Thus, the interval of convergence is
—1<x<0or (-1,0)

the radius of convergence is

and the center is



Additional Examples: Find the interval and radius of convergence of the following power
series.
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