<u>Section 11.6</u>: Absolute Convergence and the Ratio and Root Tests

Absolute and Conditional Convergence:

Absolute Convergence Test (ACT): If $\sum |a_n|$ converges, then $\sum a_n$ also converges.

Definitions:

- 1. $\sum a_n$ is *absolutely convergent* or *converges absolutely* (CA) if $\sum |a_n|$ converges.
- 2. $\sum a_n$ is *conditionally convergent* or *converges conditionally* (CC) if $\sum a_n$ converges but $\sum |a_n|$ diverges.

<u>NOTE</u>: After determining convergence by the Alternating Series Test (AST), then use Integral Test, Comparison Test (CT), or Limit Comparison Test (LCT) on $\sum |a_n|$ to determine absolute convergence (CA) or conditional convergence (CC).

Examples:

$$1. \quad \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/2}}$$

3.
$$\sum_{n=3}^{\infty} \frac{(-1)^{n-1} \ln n}{n}$$

$$4. \quad \sum_{n=1}^{\infty} \frac{\sin n}{n^{3/2}}$$

The Ratio Test:

The Ratio Test (RT): Let $\sum a_n$ be a series of nonzero terms and suppose

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=\rho\,.$$

- (i) If $\rho < 1$, the series converges absolutely.
- (ii) If $\rho > 1$, the series diverges.
- (iii) If $\rho = 1$, the test is inclusive.

NOTES:

- 1. For any type of series: positive, alternating, or other.
- 2. If $\rho = 1$, the test fails. You <u>must</u> use a different test.
- 3. If $\rho = +\infty$, the series diverges (ρ does not have to be finite for this test).
- 4. If $\rho = 0$, the series converges (ρ can have a value of 0 in this test).
- 5. This test is most useful with series involving powers and factorials.

Useful Facts for Factorials:

1.
$$2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n) = 2^n n!$$

2.
$$1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1) = \frac{(2n+1)!}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} = \frac{(2n+1)!}{2^n n!}$$

Examples:

$$1. \quad \sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{n!}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}{4^n}$$

The Root Test:

The Root Test (RoT): Let $\sum a_n$ be a series of nonzero terms and suppose

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho\,.$$

- (i) If $\rho < 1$, the series converges absolutely.
- (ii) If $\rho > 1$, the series diverges.
- (iii) If $\rho = 1$, the test is inclusive.

NOTES:

- 1. For any type of series: positive, alternating, or other.
- 2. If $\rho = 1$, the test fails. You *must* use a different test.
- 3. If $\rho = +\infty$, the series diverges (ρ does not have to be finite for this test).
- 4. If $\rho = 0$, the series converges (ρ can have a value of 0 in this test).
- 5. This test is most useful for series involving powers only.
- 6. For series involving both powers and factorials use the Ratio Test (RT).

Example: Use the Root Test to determine if the following series diverges or converges.

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1}\right)^n$$

Section 11.7: Strategy for Testing Series

- 1. If $\lim_{n\to\infty} a_n \neq 0$, conclude from the n^{th} Term Test that the series diverges.
- 2. If a_n involves n!, or r^n , try the Ratio Test.
- 3. If a_n involves n^n , try the Root Test (or possibly the Ratio Test).
- 4. If the series is alternating, then obviously try the Alternating Series Test. (Don't forget to determine absolute or conditional convergence.)
- 5. If a_n is a positive series and involves only constant powers of n, try the Limit Comparison Test. In particular, if a_n is a rational expression in n, use this test with b_n as the quotient of the leading terms from numerator and denominator.
- 6. If the tests above do not work and the series is positive, try the Comparison Test or the Integral Test.
- 7. If all else fails, try some clever manipulation or a neat "trick" to determine convergence or divergence.

Summary of Tests for Convergence/Divergence of Series

Test	Convergence	Divergence
n th -Term Test	$\lim_{n\to\infty} a_n = 0$, may converge or diverge. Use another test.	$\lim_{n\to\infty}a_n\neq 0$
Geometric Series	<i>r</i> < 1	$ r \ge 1$
<i>p</i> -Series	<i>p</i> > 1	$p \leq 1$
Integral Test (The function <i>f</i> must be decreasing to apply this test.)	See improper integrals.	
Ratio/Root Test (Inconclusive if $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right = 1.$)	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$, absolute convergence	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1$
Limit Comparison Test (The convergence or divergence of $\sum b_n$ is known.)	If $\lim_{n\to\infty} \frac{a_n}{b_n} > 0$ (but not infinite), then $\sum a_n$ and $\sum b_n$ either both converge or both diverge.	
Comparison Test (The convergence or divergence of $\sum b_n$ is known.)	$\sum a_n$ converges if $\sum b_n$ converges and $a_n \leq b_n$.	$\sum a_n$ diverges if $\sum b_n$ diverges and $a_n \ge b_n$.
Alternating Series Test	i. $a_{n+1} \leq a_n (\{a_n\})$ is decreasing) and ii. $\lim_{n\to\infty} a_n = 0$	$\lim_{n\to\infty}a_n\neq 0$
Improper Integrals	The limit is a finite number.	The limit either does not exist or is infinite.