Section 11.5: Alternating Series

Alternating Series:

Definition: An alternating series is a series whose terms alternate signs. For example,

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n} \quad \text { or } \quad \sum_{n=1}^{\infty}(-1)^{n-1} a_{n}
$$

Alternating Series Test (AST): If the alternating series

$$
\begin{gathered}
a_{1}-a_{2}+a_{3}-a_{4}+\cdots \\
\text { or } \\
-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
\end{gathered}
$$

satisfies
(i) $\quad a_{n+1} \leq a_{n}$ for all n; that is, $\left\{a_{n}\right\}$ is a decreasing sequence, and
(ii) $\lim _{n \rightarrow \infty} a_{n}=0$
then the series is convergent.

NOTES:
(a) The terms of $\left\{a_{n}\right\}$ must be decreasing $\left(a_{n+1} \leq a_{n}\right)$ and $\lim _{n \rightarrow \infty} a_{n}=0$. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series diverges by the $\underline{n}^{\text {th }}-$ Term Test.
(b) If the series is not an alternating series, $\lim _{n \rightarrow \infty} a_{n}=0$ does not insure convergence!

Examples:

1. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$
2. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!}$
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2 n-1}$

Approximating the Sum of an Alternating Series

Theorem: If a convergent alternating series satisfies the condition $a_{n+1} \leq a_{n}$, then the absolute value of the remainder R_{N} involved in approximating the sum s by s_{N} is less than (or equal to) the first neglected term. That is,

$$
\left|s-s_{N}\right|=\left|R_{N}\right| \leq a_{N+1}
$$

Example: Approximate the sum of the following series by its first six terms. Find a bound for the error in your approximation.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n!}
$$

