INTEGRATING FACTORS AND EXACT EQUATIONS

If the differential equation M(x,y)dx + N(x,y)dy = 0 is not exact, it may be possible to make it exact by multiplying by an appropriate factor $\mu(x,y)$, which is called an **integrating factor** for the differential equation.

Theorem: Consider the differential equation M(x,y)dx + N(x,y)dy = 0.

1. If

$$\frac{1}{N} \left[\frac{\partial M}{\partial v} - \frac{\partial N}{\partial x} \right] = h(x)$$

is a function of x alone, then $e^{\int h(x)dx}$ is an integrating factor.

2. If

$$\frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] = k(y)$$

is a function of y alone, then $e^{\int k(y)dy}$ is an integrating factor.

NOTE: If either h(x) or k(y) is constant, this theorem still applies.

Exercises: Find an integrating factor and solve the given equation.

1.
$$(3x^2y + 2xy + y^3)dx + (x^2 + y^2)dy = 0$$

$$2. \quad dx + \left(\frac{x}{y} - \sin y\right) dy = 0$$

3.
$$y dx + (2xy - e^{2x})dy = 0$$

Answers:

1.
$$\mu(x) = e^{3x}$$
; $(3x^2y + y^3)e^{3x} = c$

2.
$$\mu(y) = y$$
; $xy + y \cos y - \sin y = c$

3.
$$\mu(y) = \frac{e^{2y}}{y}$$
; $xe^{2y} - \ln|y| = c$