Complex Numbers

Introduction to Complex Numbers:

1. The number i is the number that is a solution to the equation

$$
z^{2}+1=0
$$

or

$$
z^{2}=-1
$$

or

$$
i^{2}=-1
$$

2. If we enlarge the real numbers to a new set including the number i, we obtain the complex number system $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\}$.
(a) All familiar operations of addition, subtraction, multiplication, and division can be defined and performed.

- $(a+i b)+(c+i d)=(a+c)+i(b+d)$
- $(a+i b)-(c+i d)=(a-c)+i(b-d)$
- $(a+i b) \cdot(c+i d)=a c+a d i+b c i+b d i^{2}=(a c-b d)+i(a d+b c)$
- $\frac{a+i b}{c+i d}=\frac{a+i b}{c+i d} \cdot \frac{c-i d}{c-i d}=\frac{a c-a d i+b c i-b d i^{2}}{c^{2}-d^{2} i}=\frac{(a c+b d)-(b c-a d) i}{c^{2}+d^{2}}=\frac{a c+b d}{c^{2}+d^{2}}+i \frac{b c-a d}{c^{2}+d^{2}}$

NOTE: If $z=a+i b$, the complex conjugate is

$$
\bar{z}=\overline{a+l b}=a-i b
$$

(b) The Associative and Commutative Properties of addition and multiplication hold.
(c) The Distributive Property holds.
3. Surprisingly the following result is true:

Fundamental Theorem of Algebra: Let $a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=0$ be a polynomial equation with complex coefficients. The equation as n complex solutions (counting multiplicity).

Geometric (Vector) Representation of Complex Numbers:

We can consider $x+i y$ to be an ordered pair (x, y). If we call the x-axis the real axis, $\operatorname{Re}(z)$, and the y-axis the imaginary axis, $\operatorname{Im}(z)$, we can think of the complex number $z=x+i y$ as a two-dimensional vector.

Addition of complex numbers corresponds to vector addition geometrically.

The length of the vector $z=x+i y$ is

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

and is called the absolute value, or modulus, of the complex number z.
The distance d between two complex numbers z_{1} and z_{2} is

$$
d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{1}\right|
$$

Properties of Absolute Value:

1. $\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$
2. $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$ when $z_{2} \neq 0$
3. $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad$ (Triangle Inequality)
4. $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right| \quad$ (Reverse Triangle Inequality)

Polar Form of Complex Numbers:

If $z=x+i y$ and $r=\sqrt{x^{2}+y^{2}}=|z|$, we have

Thus, $z=x+i y=r \cos \theta+i r \sin \theta=r(\cos \theta+i \sin \theta)$. This is called the polar form of complex numbers.

Geometric Interpretation of Multiplication:

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$.

$$
\begin{aligned}
z_{1} \cdot z_{2} & =r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =r_{1} r_{2}\left[\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right)\right] \\
& =r_{1} r_{2}\left[\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right] \\
& =r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
\end{aligned}
$$

This generalizes to

$$
z_{1} z_{2} \cdots z_{n}=r_{1} r_{2} \cdots r_{n}\left[\cos \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)+i \sin \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)\right]
$$

This result is known as DeMoirve's Theorem.
If we define $e^{i \theta}=\cos \theta+i \sin \theta$, we have

$$
z=x+i y=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

This is called the exponential form of a complex number.

NOTE: At this point $e^{i \theta}$ is just short-hand for $\cos \theta+i \sin \theta$. It can be shown in more advanced classes that this is related to the complex exponential function $f(z)=e^{z}$.

Using the exponential form of complex numbers, multiplication of complex numbers becomes

$$
\begin{aligned}
z_{1} \cdot z_{2} & =r_{1} e^{i \theta_{1}} \cdot r_{2} e^{i \theta_{2}} \\
& =r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
& =r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{aligned}
$$

