

Inverse Functions

ONE-TO-ONE FUNCTIONS

Definition: A function *f* is called **one-to-one** (or 1-1) if it never takes the same value twice; that is,

 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$

THE HORIZONTAL LINE TEST

A function is one-to-one if and only if no horizontal line intersects the graph more than once.

INVERSE FUNCTION

Definition: Let f be a one-to-one function with domain A and range B. Then its <u>inverse</u> function f^{-1} has domain B and range A and is defined by

 $f^{-1}(y) = x$ if, and only if, f(x) = y

for any *y* in *B*.

COMMENTS ON INVERSE FUNCTIONS

- $f^{-1}(f(x)) = x$ for every x in A.
- $f(f^{-1}(x)) = x$ for every x in B.
- domain of f^{-1} = range of f
- range of f^{-1} = domain of f
- Do <u>*NOT*</u> mistake f^{-1} for an exponent. $f^{-1}(x)$ does <u>*NOT*</u> mean $\frac{1}{f(x)}$.

FINDING THE FORMULA FOR AN INVERSE FUNCTION

To find the formula for the inverse function of a one-to-one function:

<u>Step 1</u>: Replace f(x) with y.

- **Step 2:** Interchange the variables *x* and *y*; that is, replace all the *x*'s with *y*'s and all the *y*'s with *x*'s.
- **<u>Step 3</u>**: Solve for *y*.
- **<u>Step 4</u>**: Replace *y* with $f^{-1}(x)$.

THE GRAPH OF AN INVERSE FUNCTION

The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

INVERSE FUNCTIONS AND CONTINUITY

<u>Theorem</u>: If *f* is a one-to-one continuous function defined on an interval, then its inverse function is also continuous.

INVERSE FUNCTIONS AND DIFFERENTIABILITY

<u>Theorem</u>: If *f* is a one-to-one differentiable function with inverse function $g = f^{-1}$ and $f'(g(a)) \neq 0$, then the inverse function is differentiable at *a* and

$$g'(a) = \frac{1}{f'(g(a))}$$

Alternatively, $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$