Section 8-4

Testing a Claim about a Standard Deviation or Variance

ASSUMPTIONS FOR TESTING A CLAIM ABOUT σ OR σ^2

- 1. The sample is a simple random sample.
- 2. The population has values that are normally distributed. This is a *strict requirement*.

CHI-SQUARE DISTRIBUTION

<u>**Test Statistic:**</u> $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

- n = sample size
- $s^2 = \underline{sample}$ variance
- $\sigma^2 = population$ variance

P-VALUES AND CRITICAL VALUES FOR CHI-SQUARE DISTRIBUTION

- Use Table A-4.
- The degrees of freedom (df) = n 1

PROPERTIES OF CHI-SQUARE DISTRIBUTION

- 1. All values of χ^2 are nonnegative, and the distribution is not symmetric.
- 2. There is a different distribution for each number of degrees of freedom.
- 3. The critical values are found in Table A-4 using *n*−1 degrees of freedom.

CRITICAL VALUES

Suppose the significance level is $\alpha = 0.05$.

Right-tailed test:	Because the area to the <u>right</u> of the critical value is 0.05, locate 0.05 at the top of Table A-4.
Left-tailed test:	With a left tailed area of 0.05, the area to the <u>right</u> of the critical value is 0.95, so locate 0.95 at the top of Table A-4.
Two-tailed test:	Divide the significance level of 0.05 between the left and right tails, so that the areas to the <u>right</u> of the two critical values are 0.975 and 0.025, respectively. Locate 0.975 and 0.025 at the top of Table A-4.