Section 8-1

Basics of Hypothesis Testing

HYPOTHESIS TESTING

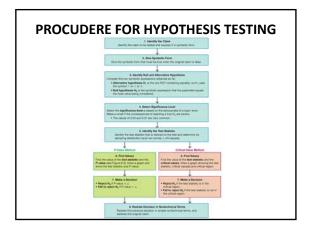
In statistics, a <u>hypothesis</u> is a claim or statement about a property of a population.

A **hypothesis test** (or **test of significance**) is a procedure for testing a claim about a property of a population.

RARE EVENT RULE

This chapter, as the last chapter, relies on the *Rare Event Rule for Inferential Statistics*.

If, under a given assumption, the probability of a particular observed event is very small and the observed event occurs <u>significantly less than</u> or <u>significantly</u> <u>greater than</u> what we typically expect with that assumption, we conclude that the assumption is probably not correct.



OBJECTIVES FOR SECTION 8-1

In this section, we will learn:

- How to identify the null hypothesis and alternative hypothesis from a given claim, and how to express both in symbolic form.
- How to calculate the value of the test statistic, given a claim and sample data.
- How to identify the critical value(s), given a significance level.
- How to identify the *P*-value, given the value of the test statistic.
- How to state the conclusion about a claim in simple and nontechnical terms.

NULL HYPOTHESIS

The <u>null hypothesis</u> (denoted by H_0) is a statement that the value of a population parameter (such as proportion, mean, or standard deviation) is <u>equal</u> to some claimed value. (The term *null* is used to indicate *no* change or no effect or no difference.) Here are some examples:

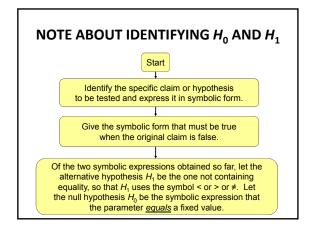
 $H_0: p = 0.3$ $H_0: \mu = 63.6$

We test the null hypothesis directly in the sense that we assume it is true and reach a conclusion to either reject H_0 or fail to reject H_0 .

ALTERNATIVE HYPOTHESIS

The alternative hypothesis (denoted by H_1 or H_a or H_A) is the statement that the parameter has a value that somehow differs from the null hypothesis. For the methods of this chapter, the symbolic form of the alternative hypothesis must use one of these symbols: < or > or \neq . For example:

Proportions:	$H_1: p > 0.3$	$H_1: p < 0.3$	$H_1: p \neq 0.3$
Means:	$H_1: \mu > 63.6$	$H_1\!\!:\mu < 63.6$	$H_1\!\!:\mu\neq 63.6$



NOTE ABOUT FORMING YOUR OWN CLAIMS

If you are conducting a study and want to use a hypothesis test to *support* your claim, the claim must be worded so that it becomes the *alternative hypothesis*. You can never support a claim that some parameter is *equal* to a specific value.

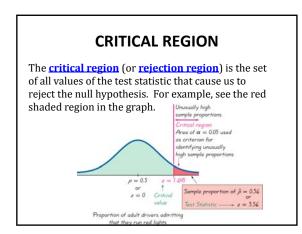
For example, if you want to support the claim that your IQ improvement course raises the IQ mean above 100, you must state the claim as $\mu > 100$. So, the null hypothesis is $H_0: \mu = 100$ and the alternative hypothesis is $H_1: \mu > 100$.

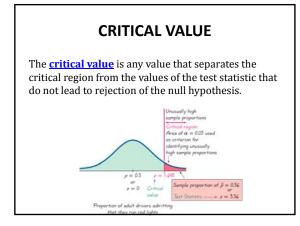
SIGNIFICANCE LEVEL

The <u>significance level</u> α for a hypothesis test is the probability value used as the cutoff for determining when the sample evidence constitutes <u>significant</u> evidence against the null hypothesis. By its nature, the significance level α is the probability of mistakenly rejecting the null hypothesis when it is true:

Significance level $\alpha = P$ (rejecting H_0 when H_0 is true)

TEST STATISTIC The **test statistic** is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis. Parameter Sampling Distribution Requirements Test Statistic $z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$ Proportion p Normal (z) $np \ge 5$ and $nq \ge 5$ σ not known and normally distributed population - µ Mean µ \sqrt{n} or σ not known and n > 30 σ known and normally distributed population Mean µ Normal (z) $\overline{X} - \mu$ z = $\frac{\sigma}{\sqrt{n}}$ or σ known and n > 30St. dev. σ or variance σ^2 Strict requirement: normally distributed population $x^2 = \frac{(n-1)s^2}{2}$ χ^2





TWO-TAILED, LEFT-TAILED, AND RIGHT-TAILED TESTS Two-tailed test: The critical

region is in the two extreme regions (tails) under the curve.

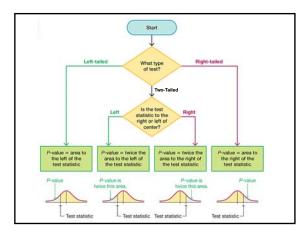
•

- Left-tailed test: The critical region is in the extreme left region = (tail) under the curve.
- **Right-tailed test:** The critical region is in the extreme right region (tail) under the curve.

Sign used in H₁: ≠ Two-tailed test

P-VALUE

The *P*-value (or *p*-value or **probability value**) is the probability of a getting a value of the test statistic that is *at least as extreme* as the one representing the sample data, assuming the null hypothesis is true. The null hypothesis is rejected if the *P*-value is very small, such as 0.05 or less. *P*-values can be found by using the procedure in the flowchart on the next slide.

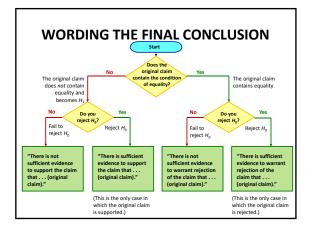


CONCLUSIONS

Our initial conclusion will always be one of the following:

- 1. Reject the null hypothesis.
- 2. Fail to reject the null hypothesis.

DECISION CRITERION		
P-value	• If <i>P</i> -value $\leq \alpha$, reject H_0 . (If <i>P</i> is low,	
Method:	the null must go.)	
	• If <i>P</i> -value > α , fail to reject H_0 .	
Critical	• If the test statistic falls within the	
Value	critical region, <i>reject</i> H ₀ .	
Method:	• If the test statistic does not fall within the critical region, <i>fail to reject</i> H ₀ .	



TYPE I ERROR

A **<u>type I error</u>** is the mistake of rejecting the null hypothesis when it is actually true.

The symbol α is used to represent the probability of a type I error.

 $\alpha = P(\text{type I error})$ = $P(\text{rejecting } H_0 \text{ when } H_0 \text{ is true})$

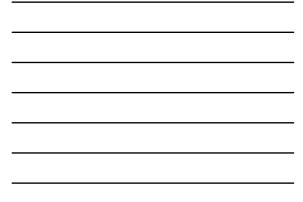
TYPE II ERROR

A **<u>type II error</u>** is the mistake of failing to reject the null hypothesis when it is actually false.

The symbol β is used to represent the probability of a type II error.

 $\beta = P(\text{type II error})$ = $P(\text{failing to reject } H_0 \text{ when } H_0 \text{ is false})$

		True State of Nature	
		Null hypothesis is true	Null hypothesis is false
Preliminary Conclusion	Reject H ₀	Type I error: Reject a true H_0 . P (type I error) = α	Correct decision
	Fail to reject H ₀	Correct decision	Type II error: Fail to reject a false H_0 P (type II error) = β
Descriptio	D X	rror and a type I ng true or false, 1	



CONTROLLING TYPE I AND TYPE II ERRORS

- For any fixed *α*, an increase in the sample size *n* will cause a decrease in *β*.
- For any fixed sample size *n*, a decrease in *α* will cause an increase in *β*. Conversely, an increase in *α* will cause a decrease in *β*.
- To decrease both α and β , increase the sample size.